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The requirement for real-time monitoring in the modern
and highly automated food processing environment has
stimulated research into rapid microbiological testing. This
review will concentrate on the search for a rapid detection
system for the microbial spoilage of meats that has been
ongoing since at least the 1970s. The metabolic processes
and bacteria involved within the microbial spoilage of
muscle foods will be outlined prior to a detailed overview of
the current methods employed in the industry to quantify
levels of spoilage organisms. Despite these detailed micro-
biological studies there is still a requirement within the food
industry for new techniques which would ideally be accu-
rate, non-destructive and give answers in real-time and a
range of novel analytical technologies which are currently
being developed for the rapid assessment of microbial
spoilage in muscle foods will be examined. © 2002 Elsevier
Science Ltd. All rights reserved.

* Corresponding author.

Trends in Food Science & Technology 12 (2001) 414-424

FOOD SCIENCE
GTECHNOLOGY

Review

Introduction

Muscle foods, which include both meat and poultry,
are an integral part of the human diet and have been so
for several thousand years. However, within the past
two decades public concern, as well as awareness, has
been raised due to high profile food safety issues such as
the BSE and foot and mouth epidemics centred in the
UK (Fox, 2001; Pickrell & Enserink, 2001). These out-
breaks, along with concerns over specific pathogenic
bacteria within meats (and eggs), namely Salmonella
spp. (Schlundt, 2001; Stock & Stolle, 2001; White ef al.,
2001; Zhang-Barber, Turner, & Barrow, 1999), E. coli
0157:H7 (Cassin, Lammerding, Todd, Ross, & McColl,
1998; Mariani-Kurkdjian & Bingen, 1999; Tarr, Besser,
Hancock, Keene, & Goldoft, 1997; Tuttle et al., 1999)
and Campylobacter spp. (Altekruse, 1998; Altekruse,
Stern, Fields, & Swerdlow, 1999; Frost, 2001; Harris,
Weiss, & Nolan, 1986; Hopkins & Scott, 1983), have
illustrated the requirement for a rapid and accurate
detection system for microbial spoilage of meats within
what is a large-scale production industry whose turn-
over is billions of € and $ per annum. At present no
such detection system exists within this industry. Whilst
parts of the meat and meat products industry may have
suffered some losses due to recent events, such as those
dealing in beef and lamb, the converse can be said for
the poultry industry. This may be in part concomitant
with the issues already mentioned but is far more likely
to be related to a more health conscious diet and per-
versely the huge increase in consumption of convenience
foods to which poultry, a relatively inexpensive protein
source, is ideally suited. This relatively recent change in
eating habits has emphasised the requirement for
advances in detection systems whereby those used at
present are replaced by methods that are truly rapid and
accelerate and enhance the detection of microbial spoi-
lage in muscle foods.

Processes
Microbial spoilage of muscle foods

Muscle foods are described as spoiled if organoleptic
changes make them unacceptable to the consumer.
These organoleptic characteristics can include changes
in appearance (i.e. discoloration), the development of
off-odours, slime formation or any other characteristic
which makes the food undesirable for human con-
sumption (Jackson, Acuff, & J.S., 1997; Jay, 1996). It is
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known that endogenous enzymatic activity within mus-
cle tissue post-mortem can contribute to changes during
storage (Alomirah, Alli, Gibbs, & Konishi, 1998; Jack-
son et al., 1997, Koohmaraie, 1994; Schreurs, 2000).
However, it is generally accepted that detectable orga-
noleptic spoilage is a result of decomposition and the
formation of metabolites caused by the growth of
microorganisms (Braun, Fehlhaber, Klug, & Kopp,
1999; Kakouri & Nychas, 1994; Nychas & Tassou,
1997; Schmitt & Schmidt-Lorenz, 1992; Stutz, Silver-
man, Angelini, & Levin, 1991). The organoleptic chan-
ges which take place will also vary according to the
species of microflora present, the characteristics of the
meat, processing methods, product composition and the
environment in which the food is stored (Garcia-Lopez,
Prieto, & Otero, 1998; Jackson et al., 1997).

Meat has been described as the most perishable of all
important foods and its moist, nutritious surface is
conducive to the growth of a wide range of spoilage
bacteria (Jay, 1996; Stanbridge & Davies, 1998). The
colonization and growth of microorganisms on meat
surfaces occurs in stages, the first of which involves the
attachment of bacterial cells. This process has been
described as a loose and reversible sorption, which may
be related to van der Waals forces or other physico-
chemical factors (Marshall, Stout, & Mitchell, 1971),
one of which may be the population of bacteria within
the water film present on the surface of the meat
(Chung, Dickson, & Crouse, 1989; Firstenberg-Eden,
1981). The second and irreversible stage of attachment
involves the production of a glycocalyx by the bacter-
ium that consists of an adhesive extracellular poly-
saccharide layer (Costerson, Irvin, & Cheng, 1981).
Other factors may also influence the attachment of
bacteria to meat surfaces and these include, surface
morphology, temperature, growth phase, motility and
other bacteria already present on the meat surface
(Jackson et al., 1997).

In moist atmospheric conditions, a consortium of
bacteria is responsible for spoilage of meat stored at
between —1 and 25°C. It is agreed that spoilage organ-
isms primarily belong to the genus Pseudomonas (and
most often P. fragi, P. fluorescens and P. putrefaciens),
which, compared with several other spoilage bacteria,
have been observed to attach more rapidly to meat
surfaces (Garcia-Lopez et al., 1998; Jackson et al.,
1997; Molin & Ternstréom, 1982; Stanbridge & Davies,
1998). Other major components of the spoilage flora of
meat stored aecrobically under refrigeration tempera-
tures include the genera Moraxella, Psychrobacter and
Acinetobacter. Whilst the dominant spoilage microflora
are generally Gram-negative, motile and non-motile
aerobic rods and coccobacilli, the initial population
may also contain varying levels of Gram-positive gen-
era usually represented by micrococci, then lactic acid
bacteria and Bronchothrix thermosphacta (Adams &

Moss, 2000; Holzapfel, 1998; Stanbridge & Davies,
1998).

Fresh meats generally have a pH range between 5.5
and 5.9 and contain sufficient glucose and other simple
carbohydrates to support approximately 10° colony
forming units per square centimetre (cfu cm~2). The
organisms that grow the fastest and utilize glucose at
refrigeration temperatures are the pseudomonads (Gill
& Newton, 1977; Jay, 1996; Seymour, Cole, & Coote,
1994). At levels of 107 cfu cm~2 off-odours may become
evident in the form of a faint ‘dairy’ type aroma and
once the surface population of bacteria has reached 108
cfu cm~2 the supply of simple carbohydrates has been
exhausted and recognizable off-odours develop leading
to what is known as ‘sensory’ spoilage (Jackson et al.,
1997; Jay, 1996; Stanbridge & Davies, 1998). The
development of off-odours is dependent upon the extent
to which free amino acid utilization has occurred and
these odours have been variously described as dairy/
buttery/fatty/cheesy at 107 cfu cm~2 through to a sickly
sweet/fruity aroma at 10% cfu cm~2 and finally putrid
odour at 10° cfu cm—2 (Adams & Moss, 2000; Dainty,
Edwards, & Hibbard, 1985).

The surface of the meat will also begin to feel tacky
and this is indicative of the first stages of slime forma-
tion, attributable to the growth of bacteria and synth-
esis of polysaccharides which gradually form a layer on
the meat surface (Ingram & Dainty, 1971; Jackson et
al., 1997). A deterioration in the colour of meat is due to
a fall in the partial pressure of oxygen under patches of
microorganisms. Once the population of bacteria
approaches its carrying capacity (~10® cfu cm~2) and
glucose has been utilized, the diffusion gradient from
the underlying tissue of the meat to the surface cannot
meet microbial demand and other substrates are used
sequentially until nitrogenous compounds lead to the
formation of malodorous substances such as ammonia
(NHs5), dimethylsulphide (C,H¢S) and diacetyl (C4HgO»)
(Stanbridge & Davies, 1998).

Microbial metabolites

Over the last three decades, numerous attempts have
been made to associate given metabolites with the
microbial spoilage of meat and to utilize this knowledge
to provide information about spoilage and possibly
determine remaining shelf-life (Alomirah et al., 1998;
Braun et al., 1999; Dainty, 1996; Dainty et al., 1985;
Dainty, Edwards, Hibbard, & Marnewick, 1988; Dainty,
Edwards, Hibbard, & Ramantanis, 1986; Dainty, Shaw,
De Boer, & Scheps, 1975; De Castro, Asensio, Sanz, &
Ordonez, 1988; De Pablo, Asensio, Sanz, & Ordonez,
1989; Drosinos & Board, 1994; Edwards, Dainty, &
Hibbard, 1985; Ingram & Dainty, 1971; Kakouri &
Nychas, 1994; Nychas, Drosinos, & Board, 1998;
Nychas & Tassou, 1997; Seymour et al., 1994). Further,
whilst microbiological changes on, and to a lesser
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extent, within, the meat substrate have been studied in
detail, the physicochemical changes that take place
during microbial colonization have not been studied in
equivalent detail (Jay, 1996; Nychas et al., 1998). The
physicochemical changes during the spoilage process
occur within the aqueous phase of meat and this phase
contains low molecular weight compounds, such as
glucose, lactic acid, certain amino acids, nucleotides,
urea and water soluble proteins that are catabolized by
the vast majority of the meat microflora (Drosinos &
Board, 1994; Nychas et al., 1998). The order in which
these compounds are catabolized by the major meat
spoilage organisms is summarized in Fig. 1.

Spoilage in meats is most frequently associated with
the post-glucose utilization of amino acids by pseudo-
monads and it has been observed that surface levels of
glucose decrease significantly as the first signs of the
organoleptic changes associated with spoilage become
evident. Borch, Berg, and Holst (1991) concluded that
glucose limitation caused a switch from a saccharolytic
to an amino acid-degrading metabolism in at least some
bacterial species. Extensive studies on the metabolic
activities of pseudomonads in an extract of minced lamb
(Drosinos & Board, 1994) have illustrated that the oxi-
dation of glucose by this genus caused a transient accu-
mulation of D-gluconate and 6-phosphogluconate which
coincided with the exponential growth curve of the
microflora.

Once surface levels of glucose have been depleted
bacteria will metabolize secondary substrates such as
free amino acids and lactate. Many bacteria secrete
proteases (endoproteases, proteinases, aminopeptidases
and carboxypeptidases) and in general Gram-negative
bacteria in chilled meat predominantly secrete amino-
peptidases (Nychas et al., 1998). This factor alone has
been forwarded as a means of acquiring a rapid estima-
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Fig. 1. The order in which muscle food substrates are catabolized
by the major meat spoilage organisms. Adapted from aerobic
spoilage process data summarized by Nychas et al. (1998).

tion of the bacterial quality of meat by the use of
enzyme assays (Braun et al., 1999; De Castro et al.,
1988). The utilization by bacteria of free amino acids
leads to an increase in levels of ammonia and it has been
observed that the switch from a saccharolytic to an
amino acid-degrading metabolism occurs whilst con-
siderable levels of glucose are still present deep within
the muscle tissue (Seymour et al., 1994). In addition to
ammonia, the by-products of amino acid utilization
include sulphides, indole, scatole and amines, such as
the diamines putrescine and cadaverine (Adams &
Moss, 2000; Dainty et al., 1986, 1988; Jay, 1996;
Kumudavally, Shobha, Vasundhara, & Radhakrishna,
2001). It is the production of these compounds, amongst
others, that lead to the characteristic changes associated
with spoiled meat, such as malodours and the increase
in pH.

Detection methods
Current status

The conventional microbiological approach to food
sampling has changed little over the last half century
and it has been estimated that there are currently in
excess of 40 methods to measure and detect bacterial
spoilage in meats (Betts, 1999; Jay, 1996; Nychas et al.,
1998). The development of rapid microbiological test
procedures over the last two decades can be divided into
two main groups; enumeration and presence/absence
tests.

Enumeration methods

Current rapid enumeration methods are generally
based on microscopy, ATP bioluminescence or the
measurement of electrical phenomena. In the case of
microscopic methods sophisticated techniques have
been developed where microorganisms are stained with
fluorescent dyes and viewed with an epifluorescent
microscope. Whilst initial problems such as staining of
both viable and non-viable cells were overcome with the
introduction of the direct epifluorescent filter technique
(DEFT), the procedure is both time consuming and
laborious (Pyle, Broadaway, & McFeters, 1999;
Restaino, Castillo, Stewart, & Tortorello, 1996; Shaw,
Harding, Hudson, & Farr, 1987, Wang & Sharpe,
1998). This process has been aided with the develop-
ment of fully automated systems and the use of flow
cytometry (Rattanasomboon et al., 1999), but results
from low levels of microorganisms in food samples can
still take 18-20 h to obtain (Betts, 1999) and the spoi-
lage organism has to be disaggregated from the meat
surface which, with some organisms forming a glycoca-
lyx layer, is necessarily difficult.

ATP bioluminescence acts by measuring ATP levels in
bacterial cells in culture in order to calculate the number
of cells present in that culture (Champiat, Matas, Mon-
fort, & Fraass, 2001; de Boer & Beumer, 1999; D’Souza,
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2001; Siragusa, Dorsa, Cutter, Perino, & Koohmaraie,
1996). The problem with this method is that ATP is the
primary energy source of a// living cells and the food
samples themselves will also contain large amounts of
this chemical which have to be destroyed before micro-
bial ATP can be measured. Therefore, the measurement
of ATP bioluminescence is probably best suited to
detection of contaminated surfaces on equipment and
machinery associated with food production and prep-
aration. Electrical measuring methods are based on the
detection of electrical current during microbial growth,
as changes are caused by bacteria that metabolize
uncharged particles in any growth medium, thereby
increasing the conductivity of that medium. Commer-
cially available instruments include the Bactometer,
Malthus Analyser, Rabit and Bactrac (Betts, 1999; Jay,
1996).

Detection methods

Current detection methods are based on immunolo-
gical or nucleic acid-based procedures. Immunological
methods employ antibodies that are raised to react to
surface antigens of specific microorganisms (Betts, 1999;
Jay, 1996). The most common form of these methods is
the enzyme linked immunosorbent assays (ELISAs) and
these are based on the use of an enzyme label. Those in
use are currently aimed at the detection of food-borne
pathogens such as Salmonella, Listeria, E. coli O157:H7
as well as toxins produced by Staphylococcus aureus and
proteases from species belonging to the food spoilage
genus Pseudomonas (Jabbar & Joishy, 1999). Nucleic
acid-based procedures utilize probes that are small seg-
ments of single-stranded complementary nucleic acid
that are used to detect specific genetic sequences in test
samples. Nucleic acid probes can be used to detect
either DNA or RNA sequences in order to identify
accurately a specific microorganism (Alexandre, Prado,
Ulloa, Arellano, & Rios, 2001; Venkitanarayanan,
Khan, & Faustman, 1996)

The most widely applied nucleic acid detection
method at present utilizes the polymerase chain reaction
(PCR) (Mullis & Faloona, 1987). This method has been
reported to allow for rapid and selective identification
and/or detection of microorganisms in different matri-
ces by amplifying specific gene fragments and detecting
the PCR amplicons by gel electrophoresis (Cloak,
Dufty, Sheridan, Blair, & McDowell, 2001; Gutierrez et
al., 1998; Scheu, Berghof, & Stahl, 1998; Yost & Nat-
tress, 2000) and thus, like for nucleic acid probes, the
DNA sequence of the target organism must be known
prior to the analysis. Nevertheless, this method also has
inherent limitations for as long as intact nucleic acid
sequences are present in a sample they will be amplified
by PCR. Therefore, DNA from non-viable micro-
organisms can lead to false positive results being
obtained. Other major problems likely to be encoun-

tered when using PCR methods with food are the pre-
sence of PCR inhibitors, such as those present within
the matrix of cheeses (Jay, 1996; Scheu et al., 1998).

The degree of inhibition is entirely dependent on the
type of food being sampled and whilst procedures exist
to circumvent inhibition, such as dilution of food sam-
ples, this also decreases the sensitivity of the test (Scheu
et al., 1998). The final limitation of PCR is yet again the
time factor, as this can be a time-consuming method
especially as regards large-scale testing and the tedious
and exacting nature of the reaction set-up (Barbour &
Tice, 1997).

However, PCR is at present one of the most rapid
procedures available for the detection of pathogens in
foods with test times for Salmonella spp., for example,
of approximately 18 h (Warneck, 2001).

Future trends

It is apparent that the range of protocols currently
undertaken to determine the presence, type and enu-
meration of microorganisms and their metabolic pro-
ducts all have inherent limitations. Whilst some
methods are superior to others and most give adequate
results, the major drawback at present is the time taken
to obtain results, which because they are so slow give
retrospective information. This can be a major draw-
back within the food industry as monitoring proce-
dures, such as the Hazard Analysis Critical Control
Point (HACCP) system, need to give results in real-time
to enable corrective action to be taken as soon as pos-
sible within busy and highly automated processing
environments. The ideal method for the on-line micro-
biological analysis of meat would be rapid, non-
destructive, reagentless, quantitative and relatively
inexpensive and at present no such method exists within
the meat industry. The majority of studies within the
literature have concentrated on refinement of current
methods and in particular immunological (Jabbar &
Joishy, 1999) and nucleic acid-based approaches (Cloak
et al., 2001; Warneck, 2001), whilst others have made
significant improvements in their technique in terms of
rapidity by targeting specific metabolites with accurate
chromatographic separation and relate the levels of the
spoilage indicator cadaverine to the bacterial numbers
within 1.5-2 h (Kumudavally ez al., 2001).

Some of the most interesting analytical approaches
being forwarded for the rapid and quantitative detec-
tion of microbial spoilage in meats could fall under the
generic heading of biosensors. These include most
notably enzymatic reactor systems with amperometric
electrodes for the determination of the quality of
chicken by sensing diamine levels (Okuma, Okazaki,
Usami, & Horikoshi, 2000; Suzuki, Usami, Horikoshi,
& Okuma, 2001; Yano, Yokoyama, Tamiya, & Karube,
1996). It has been reported that accurate results were
possible within 5 min from one of these studies (Suzuki
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et al., 2001) however, this was preceded by 10 min sam-
ple preparation for the enzyme reactor system and
would therefore not be conducive to non-invasive on-
line monitoring. However, this is a significant and
desirable improvement in rapidity in comparison to
current techniques.

Electronic noses were first developed in the mid 1980s
and are essentially an instrument comprised of an array
of electronic chemical sensors with partial specificity
and an appropriate pattern recognition system capable
of recognizing simple or complex odours (Craven,
Gardner, & Bartlett, 1996; Gardner & Bartlett, 1994,
1999) (the details of the electronic nose system are given
in Fig. 2). These instruments contain an array of sensors
that utilize a variety of different sensor technologies
including organic polymers, metal oxides and micro-
balances (Harper, 2001). Whilst these instruments have
only recently become available commercially and are
still in the developmental phase they are likely to have
many potential applications in the future including
rapid and non-invasive detection of spoilage and a
range of quality attributes in foods, including muscle
foods.

The rapid and quantitative detection of microbial
volatiles associated with muscle food spoilage would
seem a logical route to follow since this mirrors our own
organoleptic olfactory interpretation of sensory spoi-
lage, and indeed this approach has been attempted
already in terms of analysis of both meat and fish (Di
Natale et al., 1997, 2001; Haugen, 2001; Schaller, Bos-
set, & Escher, 1998; Ziegler et al., 1998). However, there
are several severe weaknesses to overcome including;
loss of sensitivity in humid conditions or high con-
centrations of alcohol (for example); very significant
instrumental drift, even within a day, and the inability
to provide absolute calibration; sensor life-span and the
incapability to provide quantitative data for aroma dif-
ferences (Harper, 2001). Despite the current limitations
associated with electronic noses they have stimulated a
great deal of research activity and it is anticipated that
they will find a range of applications within the food
industry within the next decade, provided the above
limitations are adequately addressed. Many of the drift
problems are associated with the use of chemical sensors
and whilst this could be overcome by suitable mathe-
matical transformation routines as employed for other
analytical approaches (Goodacre & Kell, 1996; Good-
acre et al., 1997), the utilization of a mass spectrometer
detector for headspace analysis may greatly improve
detection.

Fourier transform infrared (FT-IR) spectroscopy is a
non-destructive analytical technique with considerable
potential for application in the food and related indus-
tries (van Kempen, 2001). For FT-IR a particular bond
absorbs light (or electromagnetic (EM) radiation) at a
specific wavelength (for example, the infrared spectra of

proteins exhibit strong amide I absorption bands at
1653 cm™! associated with the characteristic stretching
of C=0 and C-N and the bending of the N-H bond
(Stuart, 1997)), therefore, by interrogating a food sam-
ple with EM radiation of many wavelengths in the mid-
IR range (usually defined as 4000-600 cm~!) one can
construct an infrared absorbance spectrum which can
be considered as a ‘fingerprint’ which is characteristic of
any (bio)chemical substance (Gillie, Hochlowski, &
Arbuckle-Keil, 2000; Schmitt & Flemming, 1998;
Stuart, 1997). This technique is very rapid (taking sec-
onds) and has been shown to be a valuable tool for the
rapid and accurate characterization of axenically cul-
tured bacteria (Goodacre, Rooney, & Kell, 1998;
Goodacre, Timmins, et al., 1998; Goodacre, Timmins,
Rooney, Rowland, & Kell, 1996; Lang & Sang, 1997;
Naumann, Helm, & Labischinski, 1991; Naumann,
Helm, & Schultz, 1994; Naumann, Schultz, & Helm,
1996; Timmins, Howell, Alsberg, Noble, & Goodacre,
1998), including antibiotic resistance profiling (Good-
acre, Rooney, et al., 1998; Goodacre, Timmins, et al.,
1998) and single gene knockout strains (Oliver, Winson,
Kell, & Baganz, 1998).

Whilst a number of studies have applied this techni-
que to the discrimination and adulteration of meats (Al-
Jowder, Defernez, Kemsley, & Wilson, 1999; Al-Jow-
der, Kemsley, & Wilson, 1997; Downey, McElhinney, &
Fearn, 2000; Rannou & Downey, 1997), its application
in terms of rapidly detecting microbial spoilage in meats
is only recently under investigation in our laboratory
(Ellis, Broadhurst, Kell, Rowland, & Goodacre, 2002).
A particularly robust and reproducible form of this
method is attenuated total reflectance (ATR) where the
food sample is placed in intimate contact with a crystal
of high refractive index, such as diamond, germanium,
zinc selenide or thallium iodide (as illustrated in Fig. 3)
and an IR absorbance spectrum collected in just a few
seconds. In the form of an on-line fibre optic probe and
in combination with the appropriate statistical methods
and calibration, we believe it could have the potential
for rapid and quantitative enumeration of the total
viable counts of bacteria on the surface of meat. We
have already discussed that the spoilage in meat is the
result of the decomposition and formation of meta-
bolites caused by the growth and enzymatic activity of
microorganisms. With the FT-IR approach one is able
to acquire a metabolic snapshot of the meat thus this
information is exploited and rather than detecting the
presence of bacteria per se on the meat surface, FT-IR
can be used to measure biochemical changes within the
meat substrate, enhancing and accelerating the detec-
tion of microbial spoilage (Ellis et al., 2002).

Machine learning
The main hurdle that needs to be overcome when
exploiting the advanced analytical technologies detailed
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Fig. 2. Generalised schematic of an electronic nose employing

chemical sensors. For details of the pattern-recognition system,

which to date are based on neural networks please refer to the
machine learning section.

Penetration into sample

(evanescent field depth = 1.01 pm)

Sample

To detector Mid-Infrared
(deuterated triglycine sulphate) beam

Fig. 3. A cartoon depicting the analysis of a (meat) sample by
Fourier transform infrared (FT-IR) spectroscopy using horizontal
attenuated total reflectance (HATR).

above is that the floods of data produced by these
methods may seem unmanageable. This is particularly
true when one is measuring the metabolome (Oliver et
al., 1998) and generating ‘fingerprint’-like metabolite
profiles (Fiehn et al., 2000; Kell & Mendes, 2000;

Raamsdonk et al., 2001; Trethewey, 2001). These data
are complex and since 100s to 1000s of different vari-
ables are collected are multidimensional in nature. Each
variable may be regarded as constituting a different
dimension, such that if there are n variables each object
(thing measured) may be said to reside at a unique
position in an abstract entity referred to as n-dimen-
sional hyperspace. This does not easily lend itself to
simple visual interpretation!

Conventionally the reduction of the multivariate data
generated has normally been carried out using principal
components analysis [PCA; (Joliffe, 1986)] or clustering
algorithms [discriminant analyses and hierarchical clus-
tering (Manly, 1994)]. These are unsupervised learning
methods in which the relevant multivariate algorithms
seek “‘clusters” in the data (Everitt, 1993). This allows
the investigator to group objects together on the basis of
their perceived closeness in the n-dimensional hyper-
space referred to above. Such methods, although in
some sense quantitative, are better seen as qualitative
since their chief purpose is merely to distinguish objects
or populations. However, with the advent of modern
machine learning approaches, which employed super-
vised learning algorithms (Beavis ez al., 2000; Goodacre,
2000; Lavine, 1998; Massart et al., 1997; Shaw et al.,
1999), the opportunity now exists to analyse such com-
plex high dimensional spectral patterns and form a
model (mathematical transformation) that correctly
associates the multivariate inputs with a specific target
answer to some pre-determined question (the so-called
‘gold’ standard) of biological interest which has much-
lower dimensionality. Of particular interest to the food
spoilage areas will be, for example, a qualitative ques-
tion like “What is the contaminating organism?”’ and a
quantitative one like “What is the bacterial load on the
meat surface?”.

In machine learning there are a variety of algorithms
that can be employed depending on whether the ana-
lysis is quantitative or qualitative in nature (for excel-
lent introductory texts see Cartwright, 2000; Cawsey,
1998; Massart et al., 1997; Rich & Knight, 1991). Table
1 gives a list with a brief summary of the salient fea-
tures of the most common supervised learning methods
that are employed for the analysis of multivariate data.
Over the last decade artificial neural networks (ANNs)
(Bishop, 1995; Ripley, 1996; Wasserman, 1989) have
been highly popular because of the availability of
powerful desktop PCs in conjunction with the devel-
opment of several user-friendly packages which can
simulate such ANNs in silico (Goodacre, 2000). How-
ever the mathematical transformation from multi-
variate data to the target question of interest is largely
inaccessible and ANNs are often perceived as a ‘black
box’ approach to modelling spectra. It is known from
the statistical literature that better predictions can
often be obtained when only the most relevant input
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Table 1. Features of common supervised learning algorithms

Method Significant features

Qualitative or quantitative References

Discriminant function
analysis (DFA)

Cluster analysis based method.
Involves projection of test data

into cluster space
Partial least squares (PLS) Linear regression based method

Discriminant partial least
squares (DPLS)

Linear regression based method

Artificial neural networks Can learn non-linear as well as
(ANNs) linear mappings
Most popular varieties are
multilayer perceptrons (MLPs)
and radial basis functions (RBFs)

Rule induction Often produces interpretable rules
includes classification and

regression trees (CART) and

Inductive logic programming Constructs general rules by
(ILP) inductive inference

Evolutionary computation Often produces interpretable
(EC) rules/genetic
code/parse trees.

programming (GP)
and genetic computing (GC)

fuzzy rule-building expert system (FURES).

Includes genetic algorithms (GAs), genetic

Qualitative (Manly, 1994)

Quantitative (Martens & Naes, 1989)

Qualitative (Martens & Nees, 1989)
Both MLPs (Rumelhart et al., 1986;
Werbos, 1994)
RBFs (Saha & Keller, 1990)
Qualitative CART (Breiman, Friedman, Olshen,

& Stone, 1984)
FUuRES (Harrington, 1991)

More qualitative than
quantitative

Both EC (Back, Fogel, &
Michalewicz, 1997)
GAs (Holland, 1992)
GP (Koza, 1992)
GC (Kell et al., 20071)

(Lloyd, 1987)

variables are considered (Kell & Sonnleitner, 1995;
Miller, 1990; Ripley, 1996; Seasholtz & Kowalski,
1993). Thus the best machine learning techniques
should not only give the correct answer(s), but also
identifying a subset of the variables with the maximal
explanatory power thereby providing an interpretable
description of what, in biological terms, is the basis
for that answer (Kell, Darby, & Draper, 2001). Such
explanatory modelling methods do exist and are based
on rule induction, inductive logic programming, and
most recently evolutionary computation (see Table 1 for
detalils).

Evolutionary computational-based methods are cur-
rently particularly popular inductive reasoning methods
based on the concepts of Darwinian selection to gen-
erate and to optimize a desired computational function
or mathematical expression to produce so called expla-
natory ‘rules’. These techniques include genetic algo-
rithms (GAs), genetic programming (GP) and genomic
computing (GC), and because the models are in English
and, by penalizing complex expressions, may be made
to be comparatively simple. These methods have been
employed to deconvolve and interpret multivariate
metabolome data in chemical terms (Broadhurst,
Goodacre, Jones, Rowland, & Kell, 1997; Goodacre et
al., 2000; Johnson et al., 2000; Kell et al., 2001;
McGovern et al., in press), and with particular rele-
vance to food spoilage it has been shown (Ellis et al.,

2002) that GP can be used to derive rules showing that
at levels of 107 bacteria cm~2 the main biochemical
indicator of spoilage as measured by FT-IR was the
onset of proteolysis.

Conclusion

Current methods for the rapid detection of spoilage in
meats are inadequate and all have the same recurring
theme in that they are time consuming, labour intensive
and, therefore, give retrospective information. The pro-
cesses involved in the microbial spoilage of meats are
well established and for three decades microbial meta-
bolites have been forwarded as potential indicators of
organoleptic spoilage and remaining shelf-life. Despite
this knowledge the ability to correlate biochemical
change with microbial biomass is a complex problem,
and perhaps only very recently surmountable. With
continuous advances in analytical instrumentation cou-
pled with the realization that miniaturization instru-
mentation is assuming increasing importance (McClennen,
Arnold, & Meuzelaar, 1994), as computers processing
speeds get more powerful, as our understanding of
complex multivariate spectroscopic data and their
machine learning interpretation deepens, it will not be
long before the so-called ‘rapid’ detection methods used
at present are replaced by those which are truly rapid
and detect quantitatively microbial spoilage in meats
within seconds as opposed to hours.
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