

Review

Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends

David I. Ellis and Royston Goodacre*

Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion SY23 3DD, Wales, UK (tel/fax: +44-1970-621947; e-mail: rrg@aber.ac.uk)

The requirement for real-time monitoring in the modern and highly automated food processing environment has stimulated research into rapid microbiological testing. This review will concentrate on the search for a rapid detection system for the microbial spoilage of meats that has been ongoing since at least the 1970s. The metabolic processes and bacteria involved within the microbial spoilage of muscle foods will be outlined prior to a detailed overview of the current methods employed in the industry to quantify levels of spoilage organisms. Despite these detailed microbiological studies there is still a requirement within the food industry for new techniques which would ideally be accurate, non-destructive and give answers in real-time and a range of novel analytical technologies which are currently being developed for the rapid assessment of microbial spoilage in muscle foods will be examined. © 2002 Elsevier Science Ltd. All rights reserved.

Introduction

Muscle foods, which include both meat and poultry, are an integral part of the human diet and have been so for several thousand years. However, within the past two decades public concern, as well as awareness, has been raised due to high profile food safety issues such as the BSE and foot and mouth epidemics centred in the UK (Fox, 2001; Pickrell & Enserink, 2001). These outbreaks, along with concerns over specific pathogenic bacteria within meats (and eggs), namely Salmonella spp. (Schlundt, 2001; Stock & Stolle, 2001; White et al., 2001; Zhang-Barber, Turner, & Barrow, 1999), E. coli O157:H7 (Cassin, Lammerding, Todd, Ross, & McColl, 1998; Mariani-Kurkdjian & Bingen, 1999; Tarr, Besser, Hancock, Keene, & Goldoft, 1997; Tuttle et al., 1999) and Campylobacter spp. (Altekruse, 1998; Altekruse, Stern, Fields, & Swerdlow, 1999; Frost, 2001; Harris, Weiss, & Nolan, 1986; Hopkins & Scott, 1983), have illustrated the requirement for a rapid and accurate detection system for microbial spoilage of meats within what is a large-scale production industry whose turnover is billions of € and \$ per annum. At present no such detection system exists within this industry. Whilst parts of the meat and meat products industry may have suffered some losses due to recent events, such as those dealing in beef and lamb, the converse can be said for the poultry industry. This may be in part concomitant with the issues already mentioned but is far more likely to be related to a more health conscious diet and perversely the huge increase in consumption of convenience foods to which poultry, a relatively inexpensive protein source, is ideally suited. This relatively recent change in eating habits has emphasised the requirement for advances in detection systems whereby those used at present are replaced by methods that are truly rapid and accelerate and enhance the detection of microbial spoilage in muscle foods.

Processes

Microbial spoilage of muscle foods

Muscle foods are described as spoiled if organoleptic changes make them unacceptable to the consumer. These organoleptic characteristics can include changes in appearance (i.e. discoloration), the development of off-odours, slime formation or any other characteristic which makes the food undesirable for human consumption (Jackson, Acuff, & J.S., 1997; Jay, 1996). It is

^{*} Corresponding author.

known that endogenous enzymatic activity within muscle tissue post-mortem can contribute to changes during storage (Alomirah, Alli, Gibbs, & Konishi, 1998; Jackson et al., 1997; Koohmaraie, 1994; Schreurs, 2000). However, it is generally accepted that detectable organoleptic spoilage is a result of decomposition and the formation of metabolites caused by the growth of microorganisms (Braun, Fehlhaber, Klug, & Kopp, 1999; Kakouri & Nychas, 1994; Nychas & Tassou, 1997; Schmitt & Schmidt-Lorenz, 1992; Stutz, Silverman, Angelini, & Levin, 1991). The organoleptic changes which take place will also vary according to the species of microflora present, the characteristics of the meat, processing methods, product composition and the environment in which the food is stored (García-López, Prieto, & Otero, 1998; Jackson et al., 1997).

Meat has been described as the most perishable of all important foods and its moist, nutritious surface is conducive to the growth of a wide range of spoilage bacteria (Jay, 1996; Stanbridge & Davies, 1998). The colonization and growth of microorganisms on meat surfaces occurs in stages, the first of which involves the attachment of bacterial cells. This process has been described as a loose and reversible sorption, which may be related to van der Waals forces or other physicochemical factors (Marshall, Stout, & Mitchell, 1971), one of which may be the population of bacteria within the water film present on the surface of the meat (Chung, Dickson, & Crouse, 1989; Firstenberg-Eden, 1981). The second and irreversible stage of attachment involves the production of a glycocalyx by the bacterium that consists of an adhesive extracellular polysaccharide layer (Costerson, Irvin, & Cheng, 1981). Other factors may also influence the attachment of bacteria to meat surfaces and these include, surface morphology, temperature, growth phase, motility and other bacteria already present on the meat surface (Jackson et al., 1997).

In moist atmospheric conditions, a consortium of bacteria is responsible for spoilage of meat stored at between -1 and 25°C. It is agreed that spoilage organisms primarily belong to the genus *Pseudomonas* (and most often P. fragi, P. fluorescens and P. putrefaciens), which, compared with several other spoilage bacteria, have been observed to attach more rapidly to meat surfaces (García-López et al., 1998; Jackson et al., 1997; Molin & Ternström, 1982; Stanbridge & Davies, 1998). Other major components of the spoilage flora of meat stored aerobically under refrigeration temperatures include the genera Moraxella, Psychrobacter and Acinetobacter. Whilst the dominant spoilage microflora are generally Gram-negative, motile and non-motile aerobic rods and coccobacilli, the initial population may also contain varying levels of Gram-positive genera usually represented by micrococci, then lactic acid bacteria and Bronchothrix thermosphacta (Adams &

Moss, 2000; Holzapfel, 1998; Stanbridge & Davies, 1998).

Fresh meats generally have a pH range between 5.5 and 5.9 and contain sufficient glucose and other simple carbohydrates to support approximately 10⁹ colony forming units per square centimetre (cfu cm⁻²). The organisms that grow the fastest and utilize glucose at refrigeration temperatures are the pseudomonads (Gill & Newton, 1977; Jay, 1996; Seymour, Cole, & Coote, 1994). At levels of 10⁷ cfu cm⁻² off-odours may become evident in the form of a faint 'dairy' type aroma and once the surface population of bacteria has reached 10⁸ cfu cm⁻² the supply of simple carbohydrates has been exhausted and recognizable off-odours develop leading to what is known as 'sensory' spoilage (Jackson et al., 1997; Jay, 1996; Stanbridge & Davies, 1998). The development of off-odours is dependent upon the extent to which free amino acid utilization has occurred and these odours have been variously described as dairy/ buttery/fatty/cheesy at 10⁷ cfu cm⁻² through to a sickly sweet/fruity aroma at 108 cfu cm⁻² and finally putrid odour at 109 cfu cm⁻² (Adams & Moss, 2000; Dainty, Edwards, & Hibbard, 1985).

The surface of the meat will also begin to feel tacky and this is indicative of the first stages of slime formation, attributable to the growth of bacteria and synthesis of polysaccharides which gradually form a layer on the meat surface (Ingram & Dainty, 1971; Jackson et al., 1997). A deterioration in the colour of meat is due to a fall in the partial pressure of oxygen under patches of microorganisms. Once the population of bacteria approaches its carrying capacity ($\sim 10^8$ cfu cm⁻²) and glucose has been utilized, the diffusion gradient from the underlying tissue of the meat to the surface cannot meet microbial demand and other substrates are used sequentially until nitrogenous compounds lead to the formation of malodorous substances such as ammonia (NH_3) , dimethylsulphide (C_2H_6S) and diacetyl $(C_4H_6O_2)$ (Stanbridge & Davies, 1998).

Microbial metabolites

Over the last three decades, numerous attempts have been made to associate given metabolites with the microbial spoilage of meat and to utilize this knowledge to provide information about spoilage and possibly determine remaining shelf-life (Alomirah *et al.*, 1998; Braun *et al.*, 1999; Dainty, 1996; Dainty *et al.*, 1985; Dainty, Edwards, Hibbard, & Marnewick, 1988; Dainty, Edwards, Hibbard, & Ramantanis, 1986; Dainty, Shaw, De Boer, & Scheps, 1975; De Castro, Asensio, Sanz, & Ordonez, 1988; De Pablo, Asensio, Sanz, & Ordonez, 1989; Drosinos & Board, 1994; Edwards, Dainty, & Hibbard, 1985; Ingram & Dainty, 1971; Kakouri & Nychas, 1994; Nychas, Drosinos, & Board, 1998; Nychas & Tassou, 1997; Seymour *et al.*, 1994). Further, whilst microbiological changes on, and to a lesser

extent, within, the meat substrate have been studied in detail, the physicochemical changes that take place during microbial colonization have not been studied in equivalent detail (Jay, 1996; Nychas *et al.*, 1998). The physicochemical changes during the spoilage process occur within the aqueous phase of meat and this phase contains low molecular weight compounds, such as glucose, lactic acid, certain amino acids, nucleotides, urea and water soluble proteins that are catabolized by the vast majority of the meat microflora (Drosinos & Board, 1994; Nychas *et al.*, 1998). The order in which these compounds are catabolized by the major meat spoilage organisms is summarized in Fig. 1.

Spoilage in meats is most frequently associated with the post-glucose utilization of amino acids by pseudomonads and it has been observed that surface levels of glucose decrease significantly as the first signs of the organoleptic changes associated with spoilage become evident. Borch, Berg, and Holst (1991) concluded that glucose limitation caused a switch from a saccharolytic to an amino acid-degrading metabolism in at least some bacterial species. Extensive studies on the metabolic activities of pseudomonads in an extract of minced lamb (Drosinos & Board, 1994) have illustrated that the oxidation of glucose by this genus caused a transient accumulation of D-gluconate and 6-phosphogluconate which coincided with the exponential growth curve of the microflora.

Once surface levels of glucose have been depleted bacteria will metabolize secondary substrates such as free amino acids and lactate. Many bacteria secrete proteases (endoproteases, proteinases, aminopeptidases and carboxypeptidases) and in general Gram-negative bacteria in chilled meat predominantly secrete aminopeptidases (Nychas *et al.*, 1998). This factor alone has been forwarded as a means of acquiring a rapid estima-

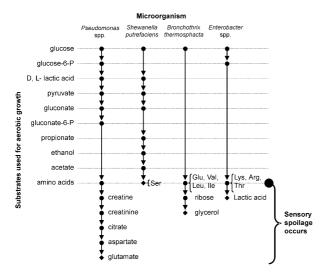


Fig. 1. The order in which muscle food substrates are catabolized by the major meat spoilage organisms. Adapted from aerobic spoilage process data summarized by Nychas *et al.* (1998).

tion of the bacterial quality of meat by the use of enzyme assays (Braun et al., 1999; De Castro et al., 1988). The utilization by bacteria of free amino acids leads to an increase in levels of ammonia and it has been observed that the switch from a saccharolytic to an amino acid-degrading metabolism occurs whilst considerable levels of glucose are still present deep within the muscle tissue (Seymour et al., 1994). In addition to ammonia, the by-products of amino acid utilization include sulphides, indole, scatole and amines, such as the diamines putrescine and cadaverine (Adams & Moss, 2000; Dainty et al., 1986, 1988; Jay, 1996; Kumudavally, Shobha, Vasundhara, & Radhakrishna, 2001). It is the production of these compounds, amongst others, that lead to the characteristic changes associated with spoiled meat, such as malodours and the increase in pH.

Detection methods

Current status

The conventional microbiological approach to food sampling has changed little over the last half century and it has been estimated that there are currently in excess of 40 methods to measure and detect bacterial spoilage in meats (Betts, 1999; Jay, 1996; Nychas *et al.*, 1998). The development of rapid microbiological test procedures over the last two decades can be divided into two main groups; enumeration and presence/absence tests.

Enumeration methods

Current rapid enumeration methods are generally based on microscopy, ATP bioluminescence or the measurement of electrical phenomena. In the case of microscopic methods sophisticated techniques have been developed where microorganisms are stained with fluorescent dyes and viewed with an epifluorescent microscope. Whilst initial problems such as staining of both viable and non-viable cells were overcome with the introduction of the direct epifluorescent filter technique (DEFT), the procedure is both time consuming and laborious (Pyle, Broadaway, & McFeters, 1999; Restaino, Castillo, Stewart, & Tortorello, 1996; Shaw, Harding, Hudson, & Farr, 1987; Wang & Sharpe, 1998). This process has been aided with the development of fully automated systems and the use of flow cytometry (Rattanasomboon et al., 1999), but results from low levels of microorganisms in food samples can still take 18-20 h to obtain (Betts, 1999) and the spoilage organism has to be disaggregated from the meat surface which, with some organisms forming a glycocalyx layer, is necessarily difficult.

ATP bioluminescence acts by measuring ATP levels in bacterial cells in culture in order to calculate the number of cells present in that culture (Champiat, Matas, Monfort, & Fraass, 2001; de Boer & Beumer, 1999; D'Souza,

2001; Siragusa, Dorsa, Cutter, Perino, & Koohmaraie, 1996). The problem with this method is that ATP is the primary energy source of all living cells and the food samples themselves will also contain large amounts of this chemical which have to be destroyed before microbial ATP can be measured. Therefore, the measurement of ATP bioluminescence is probably best suited to detection of contaminated surfaces on equipment and machinery associated with food production and preparation. Electrical measuring methods are based on the detection of electrical current during microbial growth, as changes are caused by bacteria that metabolize uncharged particles in any growth medium, thereby increasing the conductivity of that medium. Commercially available instruments include the Bactometer, Malthus Analyser, Rabit and Bactrac (Betts, 1999; Jay, 1996).

Detection methods

Current detection methods are based on immunological or nucleic acid-based procedures. Immunological methods employ antibodies that are raised to react to surface antigens of specific microorganisms (Betts, 1999; Jay, 1996). The most common form of these methods is the enzyme linked immunosorbent assays (ELISAs) and these are based on the use of an enzyme label. Those in use are currently aimed at the detection of food-borne pathogens such as Salmonella, Listeria, E. coli O157:H7 as well as toxins produced by Staphylococcus aureus and proteases from species belonging to the food spoilage genus Pseudomonas (Jabbar & Joishy, 1999). Nucleic acid-based procedures utilize probes that are small segments of single-stranded complementary nucleic acid that are used to detect specific genetic sequences in test samples. Nucleic acid probes can be used to detect either DNA or RNA sequences in order to identify accurately a specific microorganism (Alexandre, Prado, Ulloa, Arellano, & Rios, 2001; Venkitanarayanan, Khan, & Faustman, 1996)

The most widely applied nucleic acid detection method at present utilizes the polymerase chain reaction (PCR) (Mullis & Faloona, 1987). This method has been reported to allow for rapid and selective identification and/or detection of microorganisms in different matrices by amplifying specific gene fragments and detecting the PCR amplicons by gel electrophoresis (Cloak, Duffy, Sheridan, Blair, & McDowell, 2001; Gutierrez et al., 1998; Scheu, Berghof, & Stahl, 1998; Yost & Nattress, 2000) and thus, like for nucleic acid probes, the DNA sequence of the target organism must be known prior to the analysis. Nevertheless, this method also has inherent limitations for as long as intact nucleic acid sequences are present in a sample they will be amplified by PCR. Therefore, DNA from non-viable microorganisms can lead to false positive results being obtained. Other major problems likely to be encountered when using PCR methods with food are the presence of PCR inhibitors, such as those present within the matrix of cheeses (Jay, 1996; Scheu *et al.*, 1998).

The degree of inhibition is entirely dependent on the type of food being sampled and whilst procedures exist to circumvent inhibition, such as dilution of food samples, this also decreases the sensitivity of the test (Scheu *et al.*, 1998). The final limitation of PCR is yet again the time factor, as this can be a time-consuming method especially as regards large-scale testing and the tedious and exacting nature of the reaction set-up (Barbour & Tice, 1997).

However, PCR is at present one of the most rapid procedures available for the detection of pathogens in foods with test times for *Salmonella* spp., for example, of approximately 18 h (Warneck, 2001).

Future trends

It is apparent that the range of protocols currently undertaken to determine the presence, type and enumeration of microorganisms and their metabolic products all have inherent limitations. Whilst some methods are superior to others and most give adequate results, the major drawback at present is the time taken to obtain results, which because they are so slow give retrospective information. This can be a major drawback within the food industry as monitoring procedures, such as the Hazard Analysis Critical Control Point (HACCP) system, need to give results in real-time to enable corrective action to be taken as soon as possible within busy and highly automated processing environments. The ideal method for the on-line microbiological analysis of meat would be rapid, nondestructive, reagentless, quantitative and relatively inexpensive and at present no such method exists within the meat industry. The majority of studies within the literature have concentrated on refinement of current methods and in particular immunological (Jabbar & Joishy, 1999) and nucleic acid-based approaches (Cloak et al., 2001; Warneck, 2001), whilst others have made significant improvements in their technique in terms of rapidity by targeting *specific* metabolites with accurate chromatographic separation and relate the levels of the spoilage indicator cadaverine to the bacterial numbers within 1.5–2 h (Kumudavally et al., 2001).

Some of the most interesting analytical approaches being forwarded for the rapid and quantitative detection of microbial spoilage in meats could fall under the generic heading of biosensors. These include most notably enzymatic reactor systems with amperometric electrodes for the determination of the quality of chicken by sensing diamine levels (Okuma, Okazaki, Usami, & Horikoshi, 2000; Suzuki, Usami, Horikoshi, & Okuma, 2001; Yano, Yokoyama, Tamiya, & Karube, 1996). It has been reported that accurate results were possible within 5 min from one of these studies (Suzuki

et al., 2001) however, this was preceded by 10 min sample preparation for the enzyme reactor system and would therefore not be conducive to non-invasive online monitoring. However, this is a significant and desirable improvement in rapidity in comparison to current techniques.

Electronic noses were first developed in the mid 1980s and are essentially an instrument comprised of an array of electronic chemical sensors with partial specificity and an appropriate pattern recognition system capable of recognizing simple or complex odours (Craven, Gardner, & Bartlett, 1996; Gardner & Bartlett, 1994, 1999) (the details of the electronic nose system are given in Fig. 2). These instruments contain an array of sensors that utilize a variety of different sensor technologies including organic polymers, metal oxides and microbalances (Harper, 2001). Whilst these instruments have only recently become available commercially and are still in the developmental phase they are likely to have many potential applications in the future including rapid and non-invasive detection of spoilage and a range of quality attributes in foods, including muscle foods.

The rapid and quantitative detection of microbial volatiles associated with muscle food spoilage would seem a logical route to follow since this mirrors our own organoleptic olfactory interpretation of sensory spoilage, and indeed this approach has been attempted already in terms of analysis of both meat and fish (Di Natale et al., 1997, 2001; Haugen, 2001; Schaller, Bosset, & Escher, 1998; Ziegler et al., 1998). However, there are several severe weaknesses to overcome including; loss of sensitivity in humid conditions or high concentrations of alcohol (for example); very significant instrumental drift, even within a day, and the inability to provide absolute calibration; sensor life-span and the incapability to provide quantitative data for aroma differences (Harper, 2001). Despite the current limitations associated with electronic noses they have stimulated a great deal of research activity and it is anticipated that they will find a range of applications within the food industry within the next decade, provided the above limitations are adequately addressed. Many of the drift problems are associated with the use of chemical sensors and whilst this could be overcome by suitable mathematical transformation routines as employed for other analytical approaches (Goodacre & Kell, 1996; Goodacre et al., 1997), the utilization of a mass spectrometer detector for headspace analysis may greatly improve detection.

Fourier transform infrared (FT–IR) spectroscopy is a non-destructive analytical technique with considerable potential for application in the food and related industries (van Kempen, 2001). For FT–IR a particular bond *absorbs* light (or electromagnetic (EM) radiation) at a specific wavelength (for example, the infrared spectra of

proteins exhibit strong amide I absorption bands at 1653 cm⁻¹ associated with the characteristic stretching of C=O and C-N and the bending of the N-H bond (Stuart, 1997)), therefore, by interrogating a food sample with EM radiation of many wavelengths in the mid-IR range (usually defined as 4000-600 cm⁻¹) one can construct an infrared absorbance spectrum which can be considered as a 'fingerprint' which is characteristic of any (bio)chemical substance (Gillie, Hochlowski, & Arbuckle-Keil, 2000; Schmitt & Flemming, 1998; Stuart, 1997). This technique is very rapid (taking seconds) and has been shown to be a valuable tool for the rapid and accurate characterization of axenically cultured bacteria (Goodacre, Rooney, & Kell, 1998; Goodacre, Timmins, et al., 1998; Goodacre, Timmins, Rooney, Rowland, & Kell, 1996; Lang & Sang, 1997; Naumann, Helm, & Labischinski, 1991; Naumann, Helm, & Schultz, 1994; Naumann, Schultz, & Helm, 1996; Timmins, Howell, Alsberg, Noble, & Goodacre, 1998), including antibiotic resistance profiling (Goodacre, Rooney, et al., 1998; Goodacre, Timmins, et al., 1998) and single gene knockout strains (Oliver, Winson, Kell, & Baganz, 1998).

Whilst a number of studies have applied this technique to the discrimination and adulteration of meats (Al-Jowder, Defernez, Kemsley, & Wilson, 1999; Al-Jowder, Kemsley, & Wilson, 1997; Downey, McElhinney, & Fearn, 2000; Rannou & Downey, 1997), its application in terms of rapidly detecting microbial spoilage in meats is only recently under investigation in our laboratory (Ellis, Broadhurst, Kell, Rowland, & Goodacre, 2002). A particularly robust and reproducible form of this method is attenuated total reflectance (ATR) where the food sample is placed in intimate contact with a crystal of high refractive index, such as diamond, germanium, zinc selenide or thallium iodide (as illustrated in Fig. 3) and an IR absorbance spectrum collected in just a few seconds. In the form of an on-line fibre optic probe and in combination with the appropriate statistical methods and calibration, we believe it could have the potential for rapid and quantitative enumeration of the total viable counts of bacteria on the surface of meat. We have already discussed that the spoilage in meat is the result of the decomposition and formation of metabolites caused by the growth and enzymatic activity of microorganisms. With the FT-IR approach one is able to acquire a metabolic snapshot of the meat thus this information is exploited and rather than detecting the presence of bacteria per se on the meat surface, FT-IR can be used to measure biochemical changes within the meat substrate, enhancing and accelerating the detection of microbial spoilage (Ellis et al., 2002).

Machine learning

The main hurdle that needs to be overcome when exploiting the advanced analytical technologies detailed

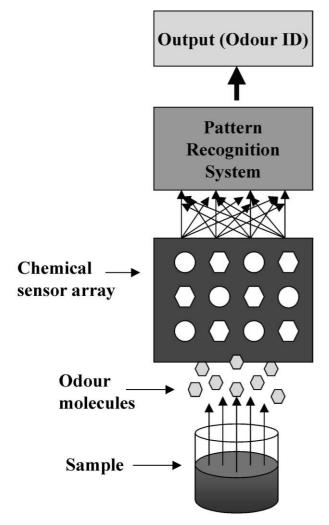


Fig. 2. Generalised schematic of an electronic nose employing chemical sensors. For details of the pattern-recognition system, which to date are based on neural networks please refer to the machine learning section.

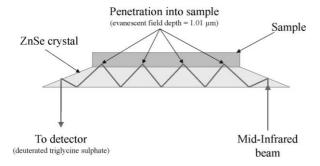


Fig. 3. A cartoon depicting the analysis of a (meat) sample by Fourier transform infrared (FT–IR) spectroscopy using horizontal attenuated total reflectance (HATR).

above is that the floods of data produced by these methods may seem unmanageable. This is particularly true when one is measuring the metabolome (Oliver *et al.*, 1998) and generating 'fingerprint'-like metabolite profiles (Fiehn *et al.*, 2000; Kell & Mendes, 2000;

Raamsdonk *et al.*, 2001; Trethewey, 2001). These data are complex and since 100s to 1000s of different variables are collected are multidimensional in nature. Each variable may be regarded as constituting a different dimension, such that if there are *n* variables each object (thing measured) may be said to reside at a unique position in an abstract entity referred to as *n*-dimensional hyperspace. This does not easily lend itself to simple visual interpretation!

Conventionally the reduction of the multivariate data generated has normally been carried out using principal components analysis [PCA; (Joliffe, 1986)] or clustering algorithms [discriminant analyses and hierarchical clustering (Manly, 1994)]. These are unsupervised learning methods in which the relevant multivariate algorithms seek "clusters" in the data (Everitt, 1993). This allows the investigator to group objects together on the basis of their perceived closeness in the *n*-dimensional hyperspace referred to above. Such methods, although in some sense quantitative, are better seen as qualitative since their chief purpose is merely to distinguish objects or populations. However, with the advent of modern machine learning approaches, which employed supervised learning algorithms (Beavis et al., 2000; Goodacre, 2000; Lavine, 1998; Massart et al., 1997; Shaw et al., 1999), the opportunity now exists to analyse such complex high dimensional spectral patterns and form a model (mathematical transformation) that correctly associates the multivariate inputs with a specific target answer to some pre-determined question (the so-called 'gold' standard) of biological interest which has muchlower dimensionality. Of particular interest to the food spoilage areas will be, for example, a qualitative question like "What is the contaminating organism?" and a quantitative one like "What is the bacterial load on the meat surface?".

In machine learning there are a variety of algorithms that can be employed depending on whether the analysis is quantitative or qualitative in nature (for excellent introductory texts see Cartwright, 2000; Cawsey, 1998; Massart et al., 1997; Rich & Knight, 1991). Table 1 gives a list with a brief summary of the salient features of the most common supervised learning methods that are employed for the analysis of multivariate data. Over the last decade artificial neural networks (ANNs) (Bishop, 1995; Ripley, 1996; Wasserman, 1989) have been highly popular because of the availability of powerful desktop PCs in conjunction with the development of several user-friendly packages which can simulate such ANNs in silico (Goodacre, 2000). However the mathematical transformation from multivariate data to the target question of interest is largely inaccessible and ANNs are often perceived as a 'black box' approach to modelling spectra. It is known from the statistical literature that better predictions can often be obtained when only the most relevant input

Table 1. Features of common supervised learning algorithms			
Method	Significant features	Qualitative or quantitative	References
Discriminant function analysis (DFA)	Cluster analysis based method. Involves projection of test data into cluster space	Qualitative	(Manly, 1994)
Partial least squares (PLS)	Linear regression based method	Quantitative	(Martens & Næs, 1989)
Discriminant partial least squares (DPLS)	Linear regression based method	Qualitative	(Martens & Næs, 1989)
Artificial neural networks (ANNs)	Can learn non-linear as well as linear mappings Most popular varieties are multilayer perceptrons (MLPs) and radial basis functions (RBFs)	Both	MLPs (Rumelhart <i>et al.</i> , 1986; Werbos, 1994) RBFs (Saha & Keller, 1990)
Rule induction	Often produces interpretable rules includes classification and regression trees (CART) and fuzzy rule-building expert system (FuRES).	Qualitative	CART (Breiman, Friedman, Olshen, & Stone, 1984) FuRES (Harrington, 1991)
Inductive logic programming (ILP)	Constructs general rules by inductive inference	More qualitative than quantitative	(Lloyd, 1987)
Evolutionary computation (EC)	Often produces interpretable rules/genetic code/parse trees. Includes genetic algorithms (GAs), genetic programming (GP) and genetic computing (GC)	Both	EC (Bäck, Fogel, & Michalewicz, 1997) GAs (Holland, 1992) GP (Koza, 1992) GC (Kell <i>et al.</i> , 2001)

variables are considered (Kell & Sonnleitner, 1995; Miller, 1990; Ripley, 1996; Seasholtz & Kowalski, 1993). Thus the best machine learning techniques should not only give the correct answer(s), but also identifying a subset of the variables with the maximal explanatory power thereby providing an interpretable description of what, in biological terms, is the basis for that answer (Kell, Darby, & Draper, 2001). Such explanatory modelling methods do exist and are based on rule induction, inductive logic programming, and most recently evolutionary computation (see Table 1 for details).

Evolutionary computational-based methods are currently particularly popular inductive reasoning methods based on the concepts of Darwinian selection to generate and to optimize a desired computational function or mathematical expression to produce so called explanatory 'rules'. These techniques include genetic algorithms (GAs), genetic programming (GP) and genomic computing (GC), and because the models are in English and, by penalizing complex expressions, may be made to be comparatively simple. These methods have been employed to deconvolve and interpret multivariate metabolome data in chemical terms (Broadhurst, Goodacre, Jones, Rowland, & Kell, 1997; Goodacre et al., 2000; Johnson et al., 2000; Kell et al., 2001; McGovern et al., in press), and with particular relevance to food spoilage it has been shown (Ellis et al., 2002) that GP can be used to derive rules showing that at levels of 10⁷ bacteria cm⁻² the main biochemical indicator of spoilage as measured by FT–IR was the onset of proteolysis.

Conclusion

Current methods for the rapid detection of spoilage in meats are inadequate and all have the same recurring theme in that they are time consuming, labour intensive and, therefore, give retrospective information. The processes involved in the microbial spoilage of meats are well established and for three decades microbial metabolites have been forwarded as potential indicators of organoleptic spoilage and remaining shelf-life. Despite this knowledge the ability to correlate biochemical change with microbial biomass is a complex problem, and perhaps only very recently surmountable. With continuous advances in analytical instrumentation coupled with the realization that miniaturization instrumentation is assuming increasing importance (McClennen, Arnold, & Meuzelaar, 1994), as computers processing speeds get more powerful, as our understanding of complex multivariate spectroscopic data and their machine learning interpretation deepens, it will not be long before the so-called 'rapid' detection methods used at present are replaced by those which are truly rapid and detect quantitatively microbial spoilage in meats within seconds as opposed to hours.

Acknowledgements

We are indebted to the Agri-Food and Engineering and Biological Systems Committees of the UK BBSRC for financial support.

References

- Adams, M. R., & Moss, M. O. (2000). Food microbiology. Cambridge: The Royal Society of Chemistry.
- Alexandre, M., Prado, V., Ulloa, M. T., Arellano, C., & Rios, M. (2001). Detection of enterohemorrhagic *Escherichia coli* in meat foods using DNA probes, enzyme-linked immunosorbent assay and polymerase chain reaction. *Journal of Veterinary Medicine Series B-Infectious Diseases and Veterinary Public Health*, 48, 321–330.
- Al-Jowder, O., Defernez, M., Kemsley, E. K., & Wilson, R. H. (1999). Mid-infrared spectroscopy and chemometrics for the authentication of meat products. *Journal of Agricultural and Food Chemistry*, 47, 3210–3218.
- Al-Jowder, O., Kemsley, E. K., & Wilson, R. H. (1997). Mid-infrared spectrosocopy and authenticity problems in selected meats: a feasibility study. Food Chemistry, 59, 195–201.
- Alomirah, H. F., Alli, I., Gibbs, B. F., & Konishi, Y. (1998). Identification of proteolytic products as indicators of quality in ground and whole meat. *Journal of Food Quality*, *21*, 299–316.
- Altekruse, S. F. (1998). Campylobacter jejuni in foods. Journal of the American Veterinary Medical Association, 213, 1734–1735.
- Altekruse, S. F., Stern, N. J., Fields, P. I., & Swerdlow, D. L. (1999). Campylobacter jejuni—an emerging foodborne pathogen. Emerging Infectious Diseases, 5, 28–35.
- Bäck, T., Fogel, D.B., & Michalewicz, Z. (1997). Handbook of evolutionary computation. Oxford: IOP Publishing/Oxford University Press
- Barbour, W. M., & Tice, G. (1997). Genetic and immunologic techniques for detecting foodborne pathogens and toxins. In M. C. Doyle, L. R. Beuchat, & T. J. Montville (Eds.), Food microbiology: fundamentals and frontiers. Washington DC: ASM Press.
- Beavis, R. C., Colby, S. M., Goodacre, R., Harrington, P. B., Reilly, J. P., Sokolow, S., & Wilkerson, C. W. (2000). Artificial intelligence and expert systems in mass spectrometry. In R. A. Meyers (Ed.), *Encyclopedia of analytical chemistry* (pp. 11558–11597). Chichester: John Wiley & Sons.
- Betts, R. (1999). Analytical microbiology—into the next millenium. New Food, 2, 9–16.
- Bishop, C. M. (1995). *Neural networks for pattern recognition*. Oxford: Clarendon Press.
- Borch, E., Berg, H., & Holst, O. (1991). Heterolactic fermentation by a homofermentative *Lactobacillus* sp during glucose limitation in anaerobic continuous culture with complete cell recycle. *Journal of Applied Bacteriology*, 71, 265–269.
- Braun, P., Fehlhaber, K., Klug, C., & Kopp, K. (1999). Investigations into the activity of enzymes produced by spoilage-causing bacteria: a possible basis for improved shelf-life estimation. *Food Microbiology*, *16*, 531–540.
- Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Pacific Grove, California: Wadsworth, Inc.
- Broadhurst, D., Goodacre, R., Jones, A., Rowland, J. J., & Kell, D. B. (1997). Genetic algorithms as a method for variable selection in PLS regression, with application to pyrolysis mass spectra. *Analytica Chimica Acta, 348, 71*–86.
- Cartwright, H. (2000). Intelligent data analysis in science. In R. G. Compton, S. G. Davies, & J. Evans (Eds.), *Oxford chemistry masters*, Vol. 4 (pp. 205). Oxford: Oxford University Press.

- Cassin, M. H., Lammerding, A. M., Todd, E. C. D., Ross, W., & McColl, R. S. (1998). Quantitative risk assessment for *Escherichia coli* O157: H7 in ground beef hamburgers. *International Journal of Food Microbiology*, 41, 21–44.
- Cawsey, A. (1998). The essence of artificial intelligence. London: Prentice Hall.
- Champiat, D., Matas, N., Monfort, B., & Fraass, H. (2001). Applications of biochemiluminescence to HACCP. *Luminescence*, *16*, 193–198
- Chung, K.-T., Dickson, J. S., & Crouse, J. D. (1989). Attachment and proliferation of bacteria on meat. *Journal of Food Protection*, *52*, 173–177.
- Cloak, O. M., Duffy, G., Sheridan, J. J., Blair, I. S., & McDowell, D. A. (2001). A survey on the incidence of *Campylobacter* spp. and the development of a surface adhesion polymerase chain reaction (SA–PCR) assay for the detection of *Campylobacter jejuni* in retail meat products. *Food Microbiology*, 18, 287–298.
- Costerson, J. W., Irvin, R. T., & Cheng, K.-J. (1981). The bacterial glycocalyx in nature and disease. *Annual Review of Microbiology*, 35, 299–324.
- Craven, M. A., Gardner, J. W., & Bartlett, P. N. (1996). Electronic noses—development and future prospects. *Trac-Trends in Analytical Chemistry*, 15, 486–493.
- Dainty, R. H. (1996). Chemical/biochemical detection of spoilage. *International Journal of Food Microbiology*, 33, 19–33.
- Dainty, R. H., Edwards, R. A., & Hibbard, C. M. (1985). Time course of volatile compound formation during refrigerated storage of naturally contaminated beef in air. *Journal of Applied Bacteriol*ogy, 59, 303–309.
- Dainty, R. H., Edwards, R. A., Hibbard, C. M., & Marnewick, J. J. (1988). Volatile compounds associated with microbial growth on normal and high pH beef stored at chill temperatures. *Journal of Applied Bacteriology*, 66, 281–289.
- Dainty, R. H., Edwards, R. A., Hibbard, C. M., & Ramantanis, S. V. (1986). Bacterial sources of putrescine and cadavarine in chill stored vacuum-packaged beef. *Journal of Applied Bacteriology*, 61, 117–123.
- Dainty, R. H., Shaw, B. G., De Boer, K. A., & Scheps, E. S. J. (1975). Protein changes caused by bacterial growth on beef. *Journal of Applied Bacteriology*, 39, 73–81.
- de Boer, E., & Beumer, R. R. (1999). Methodology for detection and typing of foodborne microorganisms. *International Journal of Food Microbiology*, *50*, 119–130.
- De Castro, B. P., Asesnsio, M. A., Sanz, B., & Ordonez, J. A. (1988). A method to assess the bacterial content of refrigerated meat. Applied and Environmental Microbiology, 54, 1462–1465.
- De Pablo, B., Asesnsio, M. A., Sanz, B., & Ordonez, J. A. (1989). The D⁻ lactic acid and acetoin/diacetyl as potential indicators of the microbial quality of vacuum-packed pork and meat products. *Journal of Applied Bacteriology*, 66, 185–190.
- Di Natale, C., Macagnano, A., Davide, F., D'Amico, A., Paolesse, R., Boschi, T., Faccio, M., & Ferri, G. (1997). An electronic nose for food analysis. *Sensors and Actuators B-Chemical*, 44, 521–526
- Di Natale, C., Olafsdottir, G., Einarsson, S., Martinelli, E., Paolesse, R., & D'Amico, A. (2001). Comparison and integration of different electronic noses for freshness evaluation of cod-fish fillets. *Sensors and Actuators B-Chemical*, 77, 572–578.
- Downey, G., McElhinney, J., & Fearn, T. (2000). Species identification in selected raw homogenized meats by reflectance spectroscopy in the mid-infrared, near-infrared, and visible ranges. *Applied Spectroscopy*, *54*, 894–899.
- Drosinos, E. H., & Board, R. G. (1994). Metabolic activities of pseudomonads in batch cultures of extract of minced lamb. *Journal of Applied Bacteriology*, 77, 613–620.
- D'Souza, S. F. (2001). Microbial biosensors. *Biosensors and Bioelectronics*, 16, 337–353.

- Edwards, R. A., Dainty, R. H., & Hibbard, C. M. (1985). Putrescine and cadavarine formation in vacuum packed beef. *Journal of Applied Bacteriology*, *58*, 13–19.
- Ellis, D.I., Broadhurst, D., Kell, D.B., Rowland, J.J., & Goodacre, R. (2002). Rapid and quantitative detection of the microbial spoilage of meat using FT–IR spectroscopy and machine learning. *Applied and Environmental Microbiology* (in press).
- Everitt, B. S. (1993). Cluster analysis. London: Edward Arnold.
 Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.
- Firstenberg-Eden, R. (1981). Attachment of bacteria to meat surfaces: a review. *Journal of Food Protection*, 44, 602–607.
- Fox, S. (2001). WHO to convene on worldwide risk of BSE and vCJD. *Infections in Medicine*, 18, 69.
- Frost, J. A. (2001). Current epidemiological issues in human campylobacteriosis. *Journal of Applied Microbiology*, 90, 85s–95s.
- García-López, M. L., Prieto, M., & Otero, A. (1998). The physiological attributes of Gram-negative bacteria associated with spoilage of meat and meat products. In A. Davies, & R. Board (Eds.), The microbiology of meat and poultry (pp. 1–28). London: Blackie Academic & Professional.
- Gardner, J. W., & Bartlett, P. N. (1994). A brief history of electronic noses. Sensors and Actuators B-Chemical, 18, 211–220.
- Gardner, J. W., & Bartlett, P. N. (1999). *Electronic noses: principles and applications*. Oxford: Oxford University Press.
- Gill, C. O., & Newton, K. G. (1977). The development of aerobic spoilage flora on meat stored at chill temperatures. *Journal of Applied Bacteriology*, 43, 189–195.
- Gillie, J. K., Hochlowski, J., & Arbuckle-Keil, G. A. (2000). Infrared spectroscopy. *Analytical Chemistry*, 72, 71–79.
- Goodacre, R. (2000). Applications of artificial neural networks to the analysis of multivariate data. In H. M. Cartwright (Ed.), *Intelligent data analysis in science: a handbook* (pp. 123–152). Oxford: Oxford University Press.
- Goodacre, R., & Kell, D. B. (1996). Correction of mass spectral drift using artificial neural networks. *Analytical Chemistry*, 68, 271–280
- Goodacre, R., Rooney, P. J., & Kell, D. B. (1998). Rapid analysis of microbial systems using vibrational spectroscopy and supervised learning methods: application to the discrimination between methicillin-resistant and methicillin-susceptible Staphylococcus aureus. In M. Jackson, & H. H. Mantsch (Eds.), Proc. of SPIE's BiOS '98- International Biomedical Optics Symposium: Infrared Spectroscopy: New Tool in Medicine, Vol. 3257 (pp. 220–229). San Jose, California, USA: SPIE.
- Goodacre, R., Shann, B., Gilbert, R. J., Timmins, É.M., McGovern, A. C., Alsberg, B. K., Kell, D. B., & Logan, N. A. (2000). The detection of the dipicolinic acid biomarker in *Bacillus* spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. *Analytical Chemistry*, 72, 119– 127.
- Goodacre, R., Timmins, É. M., Burton, R., Kaderbhai, N., Woodward, A. M., Kell, D. B., & Rooney, P. J. (1998). Rapid identification of urinary tract infection bacteria using hyperspectral, whole organism fingerprinting and artificial neural networks. *Micro-biology*, 144, 1157–1170.
- Goodacre, R., Timmins, É. M., Jones, A., Kell, D. B., Maddock, J., Heginbothom, M. L., & Magee, J. T. (1997). On mass spectrometer instrument standardization and interlaboratory calibration transfer using neural networks. *Analytica Chimica Acta, 348*, 511–532.
- Goodacre, R., Timmins, E. M., Rooney, P. J., Rowland, J. J., & Kell, D. B. (1996). Rapid identification of *Streptococcus* and *Enter-ococcus* species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks. FEMS Microbiology Letters, 140, 233–239.

- Gutierrez, R., Garcia, T., Gonzalez, I., Sanz, B., Hernandez, P. E., & Martin, R. (1998). Quantitative detection of meat spoilage bacteria by using the polymerase chain reaction (PCR) and an enzyme linked immunosorbent assay (ELISA). Letters in Applied Microbiology, 26, 372–376.
- Harper, W. J. (2001). The strengths and weaknesses of the electronic nose. In *Headspace analysis of foods and flavors* (Vol. 488, pp. 59–71). New York: Kluwer Academic/Plenum Publ.
- Harrington, P. B. (1991). Fuzzy rule-building expert systems: minimal neural networks. *Journal of Chemometrics*, *5*, 467–486.
- Harris, N. V., Weiss, N. S., & Nolan, C. M. (1986). The role of poultry and meats in the etiology of *Campylobacter jejuni/coli* enteritis. *American Journal of Public Health*, 76, 407–411.
- Haugen, J. E. (2001). Electronic noses in food analysis. In *Headspace analysis of foods and flavors* (Vol. 488, pp. 43–57). New York: Kluwer Academic/Plenum Publ.
- Holland, J. H. (1992). Adaption in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Cambridge, MA: MIT Press.
- Holzapfel, W. H. (1998). The Gram-positive bacteria associated with meat and meat products. In A. Davies, & R. Board (Eds.), *The microbiology of meat and poultry* (pp. 35–74). London: Blackie Academic & Professional.
- Hopkins, R. S., & Scott, A. S. (1983). Handling raw chicken as a source for sporadic Campylobacter jejuni infections. Infectious Diseases, 148, 770.
- Ingram, M., & Dainty, R. H. (1971). Changes caused by microbes in spoilage of meats. *Journal of Applied Bacteriology*, 34, 21–39.
- Jabbar, H., & Joishy, K. N. (1999). Rapid detection of *Pseudomonas* in seafoods using protease indicator. *Journal of Food Science*, 64, 547–549.
- Jackson, T. C., Acuff, G. R., & Dickson, J. S. (1997). Meat, poultry, and seafood. In M. P. Doyle, L. R. Beuchat, & T. J. Montville (Eds.), Food microbiology: fundamentals and frontiers (pp. 83–100). Washington DC: ASM Press.
- Jay, J. M. (1996). Modern food microbiology. London: Chapman & Hall.
- Johnson, H. E., Gilbert, R. J., Winson, M. K., Goodacre, R., Smith, A. R., Rowland, J. J., Hall, M. A., & Kell, D. B. (2000). Explanatory analysis of the metabolome using genetic programming of simple, interpretable rules. *Genetic Progr. Evolvable Machines*, 1, 243–258.
- Joliffe, I. T. (1986). Principal component analysis. New York: Springer-Verlag.
- Kakouri, A., & Nychas, G. J. E. (1994). Storage of poultry meat under modified atmospheres or vacuum packs: possible role of microbial metabolites as indicators of spoilage. *Journal of Applied Bacteriology*, 76, 163–172.
- Kell, D. B., Darby, R. M., & Draper, J. (2001). Genomic computing. Explanatory analysis of plant expression profiling data using machine learning. *Plant Physiology*, 126, 943–951.
- Kell, D. B., & Mendes, P. (2000). Snapshots of systems: metabolic control analysis and biotechnology in the post-genomic era. In A. Cornish-Bowden, & M. L. Cárdenas (Eds.), Technological and medical implications of metabolic control analysis (pp. 3–25). Dordrecht: Kluwer Academic Publishers.
- Kell, D. B., & Sonnleitner, B. (1995). GMP—good modelling practice: an essential component of good manufacturing practice. *Trends in Biotechnology*, 13, 481–492.
- Koohmaraie, M. (1994). Muscle proteinases and meat aging. *Meat Science*, *36*, 93–104.
- Koza, J. R. (1992). Genetic programming: on the programming of computers by means of natural selection. Cambridge, MA: MIT Press (pp. 819).
- Kumudavally, K. V., Shobha, A., Vasundhara, T. S., & Radhakrishna, K. (2001). Chromatographic analysis of cadaverine to detect incipient spoilage in mutton. *Meat Science*, *59*, 411–415.

- Lang, P. L., & Sang, S. C. (1997). The in situ infrared microspectroscopy of bacterial colonies on agar plates. Cellular and Molecular Biology, 44, 231–238.
- Lavine, B. K. (1998). Chemometrics. Analytical Chemistry, 70, R209–R228.
- Lloyd, J. W. (1987). Foundations of logic programming. Berlin: Springer-Verlag.
- Manly, B. F. J. (1994). *Multivariate statistical methods: a primer*. London: Chapman and Hall.
- Mariani-Kurkdjian, P., & Bingen, E. (1999). Escherichia coli O157: H7, an emerging pathogen. Presse Medicale, 28, 2067–2074.
- Marshall, K. C., Stout, R., & Mitchell, R. (1971). Mechanism of the initial events in the sorption of marine bacteria to surfaces. *Journal of General Microbiology*, 68, 337–348.
- Martens, H., & Næs, T. (1989). *Multivariate calibration*. Chichester: John Wiley.
- Massart, D. L., Vandeginste, B. G. M., Budgens, L. M., Dejong, S., Lewi, P. J., & Smeyers-Verbeke, J. (1997). *Handbook of chemometrics and qualimetrics: part A*. Amsterdam: Elsevier.
- McClennen, W. H., Arnold, N. S., & Meuzelaar, H. L. C. (1994). Field-portable hyphenated instrumentation—the birth of the tricorder. *TrAC-Trends in Analytical Chemistry*, *13*, 286–293.
- McGovern, A. C., Broadhurst, D., Taylor, J., Gilbert, R. J., Kaderbhai, N., Winson, M. K., Small, D. A. P., Rowland, J. J., Kell, D. B., & Goodacre, R. (2002). Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: application to gibberellic acid production. *Biotechnology & Bioengineering* (in press)
- Miller, A. J. (1990). Subset selection in regression. London: Chapman and Hall.
- Molin, G., & Ternström, A. (1982). Numerical taxonomy of psychrotrophic pseudomonads. *Journal of General Microbiology*, 128, 1249–1264.
- Mullis, K. B., & Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase–catalysed chain reaction. *Methods in Enzymology*, 155, 335–350.
- Naumann, D., Helm, D., & Labischinski, H. (1991). Microbiological characterizations by FT–IR spectroscopy. *Nature*, *351*, 81–82.
- Naumann, D., Helm, D., & Schultz, C. (1994). Characterization and identification of micro-organisms by FT–IR spectroscopy and FT–IR microscopy. In F. G. Friest, A. Ramos-Cormenzana, & B.
 J. Tindall (Eds.), Bacterial diversity and systematics (pp. 67–85). New York: Plenum Press.
- Naumann, D., Schultz, C. P., & Helm, D. (1996). What can infrared spectroscopy tell us about the structure and composition of intact bacterial cells? In H. H. Mantsch, & D. Chapman (Eds.), *Infrared spectroscopy of biomolecules* (pp. 279–310). New York: Wiley.
- Nychas, G. J. E., Drosinos, E. H., & Board, R. G. (1998). Chemical changes in stored meat. In A. Davies, & R. Board (Eds.), *The microbiology of meat and poultry* (pp. 288–320). London: Blackie Academic & Professional.
- Nychas, G. J. E., & Tassou, C. C. (1997). Spoilage processes and proteolysis in chicken as detected by HPLC. *Journal of the Science of Food and Agriculture*, 74, 199–208.
- Okuma, H., Okazaki, W., Usami, R., & Horikoshi, K. (2000). Development of an enzyme reactor system with an amperometric detection and application to the estimation of the incipient stage of spoilage of chicken. *Analytica Chimica Acta,* 411, 37–43.
- Oliver, S. G., Winson, M. K., Kell, D. B., & Baganz, F. (1998). Systematic functional analysis of the yeast genome. *Trends Biotechnol.*, 16, 373–378.
- Pickrell, J., & Enserink, M. (2001). Foot-and-mouth disease—UK outbreak is latest in global epidemic. *Science*, 291, 1677.
- Pyle, B. H., Broadaway, S. C., & McFeters, G. A. (1999). Sensitive detection of *Escherichia coli* O157: H7 in food and water by

- immunomagnetic separation and solid-phase laser cytometry. *Applied and Environmental Microbiology*, 65, 1966–1972.
- Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N. S., Hayes, A., Walsh, M. C., Berden, J. A., Brindle, K. M., Kell, D. B., Rowland, J. J., Westerhoff, H. V., vanDam, K., & Oliver, S. G. (2001). A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. *Nature Biotechnology*, 19, 45–50.
- Rannou, H., & Downey, G. (1997). Discrimination of raw pork, chicken and turkey meat by spectroscopy in the visible, near-and mid-infrared ranges. *Analytical Communications*, 34, 401–404.
- Rattanasomboon, N., Bellara, S. R., Harding, C. L., Fryer, P. J., Thomas, C. R., Al-Rubeai, M., & McFarlane, C. M. (1999). Growth and enumeration of the meat spoilage bacterium *Brochothrix thermosphacta*. *International Journal of Food Microbiology*, 51, 145–158.
- Restaino, L., Castillo, H. J., Stewart, D., & Tortorello, M. L. (1996). Antibody-direct epifluorescent filter technique and immuno-magnetic separation for 10-h screening and 24-h confirmation of *Escherichia coli* O157:H7 in beef. *Journal of Food Protection*, 59, 1072–1075.
- Rich, E., & Knight, K. (1991). *Artificial intelligence*. New York: McGraw-Hill.
- Ripley, B. D. (1996). *Pattern recognition and neural networks*. Cambridge: Cambridge University Press pp. 403.
- Rumelhart, D. E., McClelland, J. L. & The PDP Research Group. 1986. Parallel distributed processing, experiments in the microstructure of cognition. Cambridge, MA: MIT Press (Vols. I and II).
- Saha, A., & Keller, J. D. (1990). Algorithms for better representation and faster learning in radial basis functions. In D. Touretzky (Ed.), *Advances in neural information processing Sytems*, Vol. 2 (pp. 482–489). San Mateo, CA: Morgan Kaufmann Publishers.
- Schaller, E., Bosset, J. O., & Escher, F. (1998). 'Electronic noses' and their application to food. Food Science and Technology— Lebensmittel-Wissenschaft & Technologie, 31, 305–316.
- Scheu, P. M., Berghof, K., & Stahl, U. (1998). Detection of pathogenic and spoilage microorganisms in food with the polymerase chain reaction. *Food Microbiology*, *15*, 13–31.
- Schlundt, J. (2001). Emerging food-borne pathogens. *Biomedical and Environmental Sciences*, 14, 44–52.
- Schmitt, J., & Flemming, H.-C. (1998). FTIR-spectroscopy in microbial and material analysis. *International Biodeterioration and Biodegradation*, 41, 1–11.
- Schmitt, R. E., & Schmidt-Lorenz, W. (1992). Degradation of amino acids and protein changes during microbial spoilage of chilled unpacked and packed chicken carcasses. *Lebensm.-Wiss. u.-Technol.*, 25, 11–20.
- Schreurs, F. J. G. (2000). Post-mortem changes in chicken muscle. Worlds Poultry Science Journal, 56, 319–346.
- Seasholtz, M. B., & Kowalski, B. (1993). The parsimony principle applied to multivariate calibration. *Analytica Chimica Acta, 277*, 165–177.
- Seymour, I. J., Cole, M. B., & Coote, P. J. (1994). A substrate-mediated assay of bacterial proton efflux/influx to predict the degree of spoilage of beef mince stored at chill temperatures. *Journal of Applied Bacteriology*, 76, 608–615.
- Shaw, A. D., Winson, M. K., Woodward, A. M., McGovern, A. C., Davey, H. M., Kaderbhai, N., Broadhurst, D., Gilbert, R. J., Taylor, J., Timmins, É. M., Alsberg, B. K., Rowland, J. J., Goodacre, R., & Kell, D. B. (1999). Rapid analysis of high-dimensional bioprocesses using multivariate spectroscopies and advanced chemometrics. In T. Scheper (Ed.), Advances in biochemical engineering/biotechnology, Vol. 66 (pp. 83–114). Berlin: Springer-Verlag.
- Shaw, B. G., Harding, C. D., Hudson, W. H., & Farr, L. (1987). Rapid estimation of microbial numbers on meat and poultry by the

- direct epifluorescent filter technique. *Journal of Food Protection*, 50, 652.
- Siragusa, G. R., Dorsa, W. J., Cutter, C. N., Perino, L. J., & Koohmaraie, M. (1996). Use of a newly developed rapid microbial ATP bioluminescence assay to detect microbial contamination on poultry carcasses. *Journal of Bioluminescence and Chemiluminescence*, 11, 297–301.
- Stanbridge, L. H., & Davies, A. R. (1998). The microbiology of chillstored meat. In A. Davies, & R. Board (Eds.), *The microbiology of meat and poultry* (pp. 174–219). London: Blackie Academic & Professional.
- Stock, K., & Stolle, A. (2001). Incidence of Salmonella in minced meat produced in a European Union-approved cutting plant. *Journal of Food Protection*, 64, 1435–1438.
- Stuart, B. (1997). Biological applications of infrared spectroscopy. Chichester: John Wiley & Sons.
- Stutz, H. K., Silverman, G. J., Angelini, P., & Levin, R. E. (1991). Bacteria and other volatile compounds associated with ground beef spoilage. *Journal of Food Science*, *56*, 1147–1153.
- Suzuki, Y., Usami, R., Horikoshi, K., & Okuma, H. (2001). Enzyme reactor system for the determination of the quality of chicken. *Sensors and Materials*, 13, 129–136.
- Tarr, P. I., Besser, T. E., Hancock, D. D., Keene, W. E., & Goldoft, M. (1997). Verotoxigenic *Escherichia coli* infection: US overview. *Journal of Food Protection*, 60, 1466–1471.
- Timmins, É. M., Howell, S. A., Alsberg, B. K., Noble, W. C., & Goodacre, R. (1998). Rapid differentiation of closely related *Candida* species and strains by pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. *Journal of Clinical Microbiology*, 36, 367–374.
- Trethewey, R. N. (2001). Gene discovery via metabolic profiling. *Currrent Opinion in Biotechnology*, 12, 135–138.
- Tuttle, J., Gomez, T., Doyle, M. P., Wells, J. G., Zhao, T., Tauxe, R. V., & Griffin, P. M. (1999). Lessons from a large outbreak of *Escherichia coli* O157: H7 infections: insights into the infectious dose

- and method of widespread contamination of hamburger patties. *Epidemiology and Infection*, 122, 185–192.
- van Kempen, T. (2001). Infrared technology in animal production. Worlds Poultry Science Journal, 57, 29–48.
- Venkitanarayanan, K. S., Khan, M. I., & Faustman, C. (1996). Detection of meat spoilage bacteria by using the polymerase chain reaction. *Journal of Food Protection*, *59*, 845–848.
- Wang, H., & Sharpe, A. N. (1998). An immune-capturing and concentrating procedure for *Escherichia coli* O157: H7 and its detection by epifluorescence microscopy. *Food Microbiology*, 15, 559–565.
- Warneck, H. W. (2001). Method for detection of salmonella species within 18 hours. *Fleischwirtschaft*, 81, 79–81.
- Wasserman, P. D. (1989). *Neural computing: theory and practice*. London: Van Nostrand Reinhold.
- Werbos, P. J. (1994). The roots of back-propagation: from ordered derivatives to neural networks and political forecasting. Chichester: John Wiley.
- White, D. G., Zhao, S., Sudler, R., Ayers, S., Friedman, S., Chen, S., McDermott, P. F., McDermott, S., Wagner, D. D., & Meng, J. H. (2001). The isolation of antibiotic-resistant Salmonella from retail ground meats. *New England Journal of Medicine*, 345, 1147–1154.
- Yano, Y., Yokoyama, K., Tamiya, E., & Karube, I. (1996). Direct evaluation of meat spoilage and the progress of aging using biosensors. *Analytica Chimica Acta*, 320, 269–276.
- Yost, C. K., & Nattress, F. M. (2000). The use of multiplex PCR reactions to characterize populations of lactic acid bacteria associated with meat spoilage. *Letters in Applied Microbiology*, 31, 129–133.
- Zhang-Barber, L., Turner, A. K., & Barrow, P. A. (1999). Vaccination for control of Salmonella in poultry. *Vaccine*, *17*, 2538–2545.
- Ziegler, C., Gopel, W., Hammerle, H., Hatt, H., Jung, G., Laxhuber, L., Schmidt, H. L., Schutz, S., Vogtle, F., & Zell, A. (1998). Bioelectronic noses: a status report. Part II. Biosensors and Bioelectronics, 13, 539–571.

TO ADVERTISE YOUR PRODUCTS & SERVICES IN THIS ELSEVIER JOURNAL CALL:

(212) 633 3815

FOR USA, CANADA & SOUTH AMERICA

(+44) (0) 1865 843565

FOR EUROPE & REST OF THE WORLD