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Meat products are perishable foods and unless stored under
proper conditions spoil quickly. In addition, if pathogens are
present, meat products may become hazardous for con-
sumers. Pathogens such as Listeria monocytogenes, Escher-
ichia coli O157:H7, and Salmonella spp. can grow and cause
illness by the ingestion of the bacterial cells, therefore,
assurance of meat safety and quality is of utmost impor-
tance. The emergence of low infectious dose pathogens, i.e.
those that may cause disease at 1-10 organisms ingested,
presents a significant challenge to predictive microbiology.
In order to become a better tool for the meat industry and
consumers, the mathematical models that form the basis
for predicting microbial growth should (1) be validated in
the actual food rather than in lab media, (2) take into
account the cumulative effect of any temperature fluctua-
tion that regularly occurs in distribution, and (3) keep in
mind that pathogen initial count is usually unknown, and
may be below the detection limit. This review presents
some background on how to address these challenges.
© 2001 Elsevier Science Ltd. All rights reserved.
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Meat products are perishable foods and unless stored
under proper conditions, the growth of both spoilage
bacteria and pathogens can occur. Pathogens such as
Listeria monocytogenes, Escherichia coli O157:H7, and
Salmonella spp. can cause illness by the ingestion of the
bacterial cells at low doses. Incidents, such as the Bil
Mar and the Rochester Meat food poisoning outbreaks,
occurred despite their approved HACCP plans. These
outbreaks stress the need for a precise and reliable
model and data for predicting pathogen growth in meat
and its products.

From a legal standpoint, in the US, Sec 402(a)(1) of
the Federal Food Drug and Cosmetics Act (FFDCA)
states that a food is adulterated if it contains any poi-
sonous or deleterious substance that ‘““may render” the
food injurious to health. Essentially this means that a
food is legally subject to seizure or recall if it contains
any detectable level of pathogen. Although the FFDCA
specifies no numbers, in Sec 7106.18 of the Compliance
Policy Guides Manual (CPGM), the Food and Drug
Administration (FDA) established the principle of
adulteration at the level of detection for dairy foods
which has been become the standard practice for all
other foods. This principle has been upheld by the
courts, for example is US vs. Seabrook International
Foods (501 F.Supp 1086; 1980) where the “may render”
clause was interpreted to mean any detectable level of
pathogen, Salmonellae in this case.

Meats are controlled under the Federal Meat Inspec-
tion Act (FMIA) and are regulated differently.
Although the FMIA has a similar language to the
FFDCA, the Food Safety Inspection Service (FSIS) has
more specific rules for pathogens in meat. Under the
new required HACCP plan for both raw and processed
meat, USDA requires mandatory testing by the manu-
facturer for generic E. coli which may indicate the pre-
sence of pathogens (9 CFR Part 304). USDA also will
randomly test meat products for specific pathogens.
Thus in 64FR 2803-2805 (19 January 1999), the USDA
states that the detection of E. coli O157:H7 at any level
makes the meat (beef in this case) adulterated, i.c. the
level of detection is the end of shelf life based on safety.
The same policy was established in 64FR 28351-28353
(26 May 1999) for Listeria in ready to eat meats, i.e. any
finding of Listeria monocytogenes makes the product
unsafe. While not established directly, USDA also con-
siders detection of Salmonella to be adulteration, but
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has only taken action after several consecutive positive
findings based on statistical sampling approach. This
performance standard (63FR 1800-1803; 12 January
1998) deems ground beef to be adulterated if five of 53
samples (>7.5%) are positive for Salmonella. In 1999,
this standard was applied to Supreme Beef in Texas,
and although the Federal District Court did not uphold
this standard and ruled in favor of Supreme Beef, its
decision was reversed upon appeal. Supreme Beef had
argued that Salmonellae are a problem at slaughter and
thus they get bad product that was inspected and passed
by the USDA so it was not their problem.

Despite the tremendous progress in bioanalytical
techniques, for most pathogens the limit of detectability
generally is one microbe in 25 g of food. Hypothetically,
if the food contains less than one detectable pathogen in
25 g, it is considered ‘safe’ although it can become unsafe
by the time it is placed on the retail shelf if the organism
is held under conditions where it can grow. If a product
was contaminated with pathogens at a level below the
detection limit, we can define the shelf life of a product
based on safety as the time at which the pathogen reaches
a detectable count. This of course will depend on the
initial count, Ny, which could be variable, and the tem-
perature history during transport, retail and home holding.
Thus food products may become microbiologically unsafe
before or very close to the end of their sensory quality
shelf life if temperature abused as has been presumed to
be the case in the Bil Mar food incident. The current
procedures of microbiological challenge testing (MCT)
are valid only for the specific conditions of the experiment
and cannot be used when processing, product composi-
tion, environmental conditions, etc., are changed [1].

A number of internal and external factors affect
microbial growth in meat, with temperature being the
primary extrinsic controlling factor. Despite the recent
improvements in meat production and distribution,
cases of food poisoning continue to rise in most coun-
tries [2]. Predictive microbiology is a promising area of
food microbiology, providing databases and software
packages that can be an effective tool for risk assess-
ment. However to date, these tools have been mainly
used for research purposes because of practical limita-
tions. The emergence of low-infectious dose pathogens,
particularly with ground beef products presents a sig-
nificant challenge to predictive microbiology [3]. In
most models, competition between microorganisms in
foods is not considered. Growth of pathogens in meat
products will depend on the initial population density
and that of competing organisms [4]. In order to
become a better tool for the food industry and con-
sumers, models should (1) be validated in the actual
food rather than in lab media, (2) take into account the
cumulative effect of temperature fluctuation, and (3) be
able to predict the time to reach infectious levels even
for unknown initial levels that may be below detection.

Modeling microbial growth

For many homogeneous microbial populations, the
growth in either nutrient media or foods can be descri-
bed by the curve in Fig. 1. The stationary and death
phases are not applicable to shelf life based on either
quality or food safety, as by the time the population
reaches those levels, the food would be unacceptable
from a sensory quality standpoint as well as essentially
unsafe, once detectable levels of pathogens are reached.
Environmental conditions, food composition and
growth status of the microbes (lag, log or stationary
phase) can affect the growth rate. Since food becomes
microbiologically unsafe before the stationary phase is
reached, one should try to optimize analysis of the lag
time and initial exponential growth rate in the log
phase. Determining these kinetic parameters and mod-
eling the quantitative effect of various hurdles on them
is critical for risk assessment. The most important
parameter in the prediction of pathogen growth is the
time at which the organism is detectable at 1 CFU/25
grams (i.e. ~4x10~2 CFU/gram). This time corre-
sponds to 74 in Fig. 1, which shows a different lag time,
t1. The t4 could be shorter or longer than ¢;. This time
may be different than the lag time #;, which is based on
counts of 10'-10> CFU/g with a variability of 1 log
cycle. Generally 7 is considered to be the intersection of
the first lag line with the steep log phase line. Impor-
tantly, most studies used to validate mathematical
models for growth use a N of 10> CFU/g or larger, but
the actual N, for undetected pathogens would be less
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Fig. 1. A typical microbial growth curve.
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than ~4x10~2 CFU/gram. However, the current math-
ematical models have not addressed this parameter.

For the exponential phase, Monod [5] stated that the
rate at which the population increases is proportional to
the number of members in the population. Therefore,
the specific growth rate or generation time should
become constant for constant environmental conditions.
This assumption is correct for a limited period of time,
in which there is no substrate limitation or any other
environmental change, such as change in pH. The inte-
grated form of the Monod model is:

N = Noexplk(r — 11)] M

where N is the number of organisms at time ¢, N is the
initial number and at the end of the lag time, k is the
specific growth rate, and ¢, is the lag time.

The specific growth rate can be derived from the slope
of the plot of In N vs. ¢ (for t>¢;). The lag time, 7 can
be determined graphically as the intersection of the lag
line and the linear regression line of the exponential
growth phase. This model is simple and fairly accurate
and has been used extensively, including for mixed flora
[6,7].

Another approach to describe the microbial growth
curve in Fig. 1 is by a non-linear model first introduced
by Gibson et al. [8], and called the Gompertz function.
The basis for this equation is that changes in the specific
growth rate of microbes are induced by nutrient limita-
tions and production of toxic metabolites. This also
assumes an even lag period for different Nys. Typically
the specific growth rate will increase to a maximum, and
then will decrease. The Gompertz function has the
form:

LogN = a + cexp{—exp[—b(t — m)]} (2)

where N CFU unit~! at time ¢, a=asymptotic log count
of bacteria at infinitely short times, ¢=asymptotic
amount of growth that occurs as ¢ increases indefinitely
(number of log cycles of growth), m=time at which the
absolute growth rate is maximal, and b =relative growth
rate at m. Using these four parameters and a non-linear
regression of log N vs. time, one can fit the data and
obtain values of the maximum growth rate and the time
to reach that rate [8,9]. Zwietering et al. [10] suggested
that the parameters of their modified Gompertz model
for Lactobacillus plantarum can be made temperature
dependent by either logarithmic transformation of the
lag time or square root transformation of the specific
growth.

Numerous other models have been developed based
on either the Monod model or Gompertz function.
These different kinetic models have been thoroughly
reviewed and classified [11-14]. All models use the N,
value as a given initial data point, which is generally an

inoculum of 10>-10° CFU/g not the real world of
pathogens. The problem with modeling pathogens
growth is that the initial count is legally expected to be
below the level of detection. However, even if we
assume that some pathogens are present, we still cannot
answer the question of whether they will grow and what
will be the relationship of 74 to #.? In addition, we do
not know the effect of the inoculum size and initial state
of the organism (i.e. from lag, log or stationary phase)
on the #;. It is the aim of this review to address these
questions as these are key in doing a risk assessment of
any possibly contaminated food including meat.

The effect of temperature

Numerous studies have evaluated the effect of envir-
onmental factors such as temperature [15], oxygen [16],
and level of mixed microbial population in the food [17-
19] on microbial growth. However, the most important
factor for controlling microbial growth in the produc-
tion and distribution chain of chilled foods is tempera-
ture. Although microbial growth occurs from about —8
to +90°C, the growth rate of most microbes of sig-
nificance to food poisoning decreases above 35-40°C.
Within the practical distribution range for refrigerated
products (0-35°C), temperature affects the duration of
the lag phase, the rate of growth, and the final cell
numbers [15]. Food-poisoning bacteria can multiply
within a temperature range from about 0-50°C [20],
however, refrigerated storage will favor gram-negative
bacteria and psychrotrophic pathogens, whereas higher
storage temperature may favor mesophilic food-born
spoilage microorganisms [15]. It is presumed that the
temperature will also affect the multiplication rate
below the detection limit, but how this is affected is
unknown.

Arrhenius model

Based on thermodynamic considerations, the Arrhe-
nius model has had success in describing the tempera-
ture dependence of many chemical reactions related to
shelf life of food [21]. Since the replication of the gene
during cell division is a chemical process, it seems logi-
cal that the growth rate would follow the Arrhenius law
for a certain temperature range. The form of the
Arrhenius model is:

k = koexp(—Ea/RT) (©)

where k is the microbial growth rate constant, kg is the
‘collision’ or ‘frequency’ factor, T is the absolute tem-
perature (K), R is the universal gas constant (8.314 J
mol~! K=1) and E5 (J mol™!) is the activation energy.
The activation energy is a measure of the temperature
sensitivity of the reaction(s) responsible for microbial
growth. This sensitivity can be calculated from the slope
of a plot of In k vs. 1/T. The Arrhenius model has been
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applied to microbial growth in many foods including
packaged refrigerated beef [22]. The Arrhenius model
could also be used to model the temperature depen-
dence in both of the lag phases, the lower one of which
would be the most critical phase for prediction of safe
shelf life under variable temperature conditions, where
the initial microbial load is below detectability as would
be expected for pathogens. To make the Arrhenius plot,
the inverse of the lag time is used, however, the fit is
usually not as good as for the growth rate data from the
exponential phase [79,80].

Ratkowsky’s equation

Ratkowsky et al. [25] proposed an empirical equation
for the temperature dependence of microbial growth up
to the optimum temperature (7,y,) as:

Vk =BT — Tyin) @)

where k is the specific growth rate, b is the slope of the
regression line of v/k vs. the temperature, 7T is the test
temperature, and 7y, is the notational microbial
growth temperature where the regression line cuts the
temperature axis at ~/k=0. They applied the equation
to more than 50 sets of growth data with excellent fit,
and in another study for an additional 30 organisms
[26], again in both cases using data beyond the lag time.

The basic equation was extended to cover the whole
temperature range for growth and to account for the
drop in growth rate above the Ty [26]. The non-linear
regression model is:

Vi = b(T — Tnin){1 — exple(T — Tinax)]} Q)

where c¢ is an additional parameter to enable the model
to fit the data for temperatures above Top, and Tiyax is
the upper temperature where the regression line cuts the
temperature axis at +/k=0. This equation was modified
by Zwietering et al. [27] to make it applicable for
T> Tax. Their modified function was selected as the
most suitable model for specific growth rate as a func-
tion of temperatures, and also in comparison to other
models. In this equation, Ty, is a notational tempera-
ture and does not represent the actual zero growth
temperature, in some cases, Ty, for growth may be
several degrees below the freezing point, where the
water activity and other environmental factors are
altered [25,26]. Despite this criticism, the Ratkowsky
equation predictions of the measured T, for the lag
phase was used in modeling the effect of temperature on
coliform growth in meat [28]. McMeekin et al. [29] sug-
gested that the non-applicability of the Arrhenius model
for modeling the temperature-dependence of microbial
growth is a result of the change in E, value with tem-

perature. They related the activation energy to the Rat-
kowsky equation by:

Epn =2RT*/(T — Tinin) (6)

Thus, the change of E4 for a given organism is greater
for a low value of T—Tp,;n (5<T<30°C). However, this
correction may not be fully correct since the pre-expo-
nential factor (kg) in the Arrhenius equation may also
be changing with temperature. It should be noted that
Fu et al. [24] demonstrated with Pseudomonas fragi
growth in a simulated milk system, that if enough data
points are collected over time (i.e. 15 or more), and at
least five temperatures are used, there is a good fit for
both the Arrhenius model and the Ratkowsky equation.
This study demonstrates the benefit of using many data
points to fit simple equations, rather than using over
manipulated empirical equations.

Log shelf-life model

For a temperature difference from 20 to 30°C, a sim-
ple plot of the log time to reach some value N (e.g. shelf
life) vs. temperature is also a fairly good straight line
[15]. The equation takes the form of:

ts = toexp(—bT) @)

where f, is the shelf life at temperature 7' (°C), ¢, is the
shelf life at 0°C, and b is the slope of In #; vs. 7. From
this plot, the increase in rate for a 10°C increase in
temperature (Q)o) can be estimated from:

Qi =e'” (®)

It is therefore possible to use the value of Qjy as a
measure of a temperature dependence of growth. This,
plot and the derived Q;o has been used to explain the
effect of temperature on loss of quality, nutrient loss as
well as microbial growth and shelf life [15]. The Qg
value is usually assumed constant over a small tem-
perature range as noted. The reported values of Q¢ for
microbial growth under refrigeration conditions range
from 2 to 10 [15]. Such a relationship was demonstrated
for the shelf life of pasteurized milk [30].

This model is also supported by the data provided by
Rosso et al. (1996) for the growth of L. monocytogenes
in minced beef. This model thus becomes useful even if
we cannot measure the growth rate below the detection
limit. If we take a meat product and inoculate it with the
pathogen to below the detection limit, then all we need
to do is store at four or five constant temperatures and
measure a time to detection. If the plot of log z4 vs. the
temperature is a straight line as with eqn (7), then the
behavior of the organism is predictable. This plot would
then allow us to predict the time to detect at any tem-
perature, or for a time—temperature sequence. This
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approach has been successfully applied to the data of
Lindroth and Genigeorgis [16] for time to detect of
botulinum toxin in fish. Thus there should be no reason
it would not apply to the detection time for vegetative
cells. It should also be noted that this bot toxin data has
a good fit using the Arrhenius relation, and over the
narrow temperature range shows an excellent fit for In #4
vs. T (°C). Thus it can be asumed to apply to detection
limits for other pathogens.

Pathogen growth under fluctuating environmental
conditions

Besides initial contamination, temperature abuse may
be the next most important factor leading to a food
borne illness outbreaks but the extent of the risk-
increase due to temperature fluctuation is unknown.
Data in the literature for the effect of temperature-fluc-
tuation conditions on pathogen growth are minimal.
For CAP/MAP foods, a major question is whether
spoilage bacteria will result in end of sensory based shelf
life before the pathogen detection limit is reached, when
the product is exposed to temperature abuse.

Mathematical modeling for prediction of bacterial
growth for a given time—temperature history may not be
effective if there is a time—temperature history effect. A
history effect is one in which the actual growth rate that
is measured after a temperature shift is significantly dif-
ferent from that predicted by a database model done at
the same temperature as noted in Fig. 2. Several studies
at fluctuating temperatures suggested a history effect
[24,32-34], yet others did not find it [35,36]. It should be
noted that there have been no studies to determine the
effect of fluctuations of water activity, oxygen level and
carbon dioxide level on growth, and other important
factors if temperature is controlled.

As shown in Fig. 2, if an organism is grown to level A
at 20°C and then transferred to 4°C, the Arrhenius or
the shelf life models will predict that it will then grow at
the same rate as found when it is tested only at 4°C.

20°C
C 4°C

Log CFU/unit

Time

Fig. 2. Example of history effect when product is shifted after

exposure at one temperature (A) to a second temperature (B). (C)

represents a positive history effect, while (D) represents a negative
effect.

However, some metabolic effects may cause the growth
to be faster (B to C) or slower (B to D) than predicted.
If a history effect exists, than any temperature depen-
dent model will result in errors unless the effect is small.
This history effect may also independently affect the lag
phase further complicating any predictive model.

Predicting the growth of microbial pathogens in a
food system is problematic as in sensory shelf life pre-
diction for chemical reactions, due to the different tem-
perature sensitivities of different deterioration modes
[21]. Each organism of the natural flora is affected dif-
ferently by temperature change, a, and gas composi-
tion. However, given that everything but temperature is
maintained constant, the effect of time—temperature
history can be integrated simply by the following equa-
tion:

fA) =" kyarydt ©)

where f(A)= quality function=In N/N, for first order
microbial growth, kyyr,) = time-temperature depen-
dence of quality loss rate or microbial growth rate. For
pathogens this would be 1/f4. Taoukis and Labuza
[37,38] solved this equation using the Arrhenius relation
for temperature dependence. Dividing the time into
short intervals of constant temperature, and then sum-
ming up the right hand side of eqn (9) simplifies the
solution as shown in eqn (10). The value of k for each
temperature in the t—7 sequence can be calculated using
any temperature growth model. This approach is essen-
tially similar to the original temperature dependent
model used to predict the required time needed to reach
a 12-log reduction during a heat sterilization process.

i=n

In(N/No) = Y "kiAt; (10)

i=1

A number of researchers have tried to attack the
fluctuating temperature problem by designing new
models [39], using the Monod equation [40], or fitting
the models for a specific process [23,41-43]. Brockle-
hurst et al. [44] tested the effect of temperature fluctua-
tions on the growth of Salmonella typhimurium in broth
and gelatin gel. They found that for systems stressed by
pH or NaCl, when temperature fluctuated between 4
and 22°C or 12 and 22°C, the experimental data did not
fit the prediction. It should be noted that the generation
time was shorter than the predicted value when the
fluctuation cycle period was longer, as would be expec-
ted in real life. This observation may be due to a differ-
ent behavior of the bacteria in fluctuating temperatures
than predicted by models developed for constant
temperature.
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Several studies of microbial growth have shown his-
tory effects [24,32—45], however, only the study of Fu et
al. [24] examined the statistical significance of the dif-
ference between predictive models and the history effect.
The growth rate of P. fragi in a skim milk model system
under non-isothermal conditions, was affected positively
by the history (i.e. higher than predicted from iso-
thermal data), while the history effect on the lag phase
was negative (i.e. shorter than under the isothermal
conditions). These effects were more profound when the
temperature changes were stepwise vs. occurring in a
sine wave. Buchanan and Klawitter [46] showed that
prior incubation temperature affects the growth of Lis-
teria monocytogenes Scott A at 5°C. The duration of the
lag phase at 5°C decreased when either aerobic cultures
were previously grown at 28°C or when anaerobic cul-
tures were grown at 13°C or less. This is the same effect
as was found by Fu et al. [24], however, Buchanan did
not find an effect on the growth rate in the log phase.

Based on the above results, one concern with patho-
gens below the detection limit is that the actual time to
detect may be shorter than would be predicted if the
product goes through temperature fluctuations. No data
exists to confirm this disparity, but it is a very critical
point for proper risk assessment.

Modeling the growth of pathogens in ground or
emulsified meat products

Food-born pathogens are adventitiously introduced
into food, and thus are very likely to occur in very low
concentration especially if the product is ground after
contamination. Since food is considered safe until
pathogens are detected as was illustrated earlier, the
growth that one needs to model occurs during the time
where we cannot detect the bacteria. Importantly,
growth of the pathogen accelerated by temperature
fluctuations observed in normal distribution can turn an
apparently safe product into a health risk. Thus model-
ing of pathogen growth should be conceptually different
than modeling the growth of spoilage organisms since
we have no estimate of N.

The Monod model was used to describe the growth of
Listeria innocua in sausages, however, with an initial
inoculum of 10* bacteria per gram [47]. The Gompertz
function was used to describe the growth of E. coli
O157:H7 in raw ground beef [48], of Shigella flexneri in
canned beef/chicken/vegetable broth [49], of Bacillus
cereus as a function of temperature, pH and water
activity [50], and of Yersinia enterolytica at low tem-
perature [51]. A modified Gompertz function was also
used to model the growth of Aeromonas hydrophila as a
function of temperature, pH and water activity [52,53],
and L. monocytogenes [54]. All these models used data
collected from experiments that had initial counts of
No=103-10* CFU/ml, and none of these studies chal-
lenged the question of whether the model is valid for a

very low inoculum below the detection limit, and how it
would apply to fluctuating temperatures. Interestingly,
Gay et al. [55] found a different lag time (i.e. time to
reach exponential growth) when L. monocytogenes was
inoculated in liquid media at 10' (~7.7 days) or 103
(<1 day) cells per ml.

As previously noted, a critical question in predicting
growth of pathogens is the ability of the models to pre-
dict growth at different temperatures. Several studies
found large discrepancies between the predictive models
and the actual measurements. Both the USDA Patho-
gen Modeling Program (PMP), and the UK Food
Micromodel (FMM), showed that the measured lag
phases were shorter than the predicted value for L.
monocytogenes in sterile homogenized foods, held at 12—
35°C [56]. Very recently, te-Giffel and Zwietering [57]
performed an extensive validation of various models for
the growth of L. monocytogenes, and found that all
models had a very poor fit to the results obtained in
meat. On the other hand, the results of Rosso ef al. [31]
for the growth of L. monocytogenes in refrigerated and
minced beef suggest that the In of generation time cor-
related very well with temperature, i.e. a plot based on
eqn (7).

The best way to keep meat products safe is to prevent
contamination in the first place, but if they are una-
voidably contaminated, an applicable kill step should be
used to reduce or eliminate the contaminants and the
treated product should be held under conditions that
minimize the growth of any surviving pathogens. The
first may be addressed by the application of HACCP
plans, but if the meat has been contaminated by an
undetectable amount of pathogens, one needs a best
estimate of the length of the lag phase in terms of time
to detection. Use of kill steps such as heating, high
pressure or irradiation have been addressed by others.
As for holding, one can therefore define the lower lag
period as the shelf life of the meat product based on
safety concerns, which presumably is longer than based
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Fig. 3. Log shelf life plot for the lag time (h) of Salmonella typhi-
murium in lean (O) and fat (@) beef [58].
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Table 1. Temperature dependence of the lag time period vs. temperature for pathogens

o}

NA, not reported.

Pathogen Product No Temperature range (°C) IS n Q10 Ref.
L. monocytogenes Baby food (chicken) 10%-10%* 12- 35 0.987 4 2.09 [56]
E. coli O157:H7 Ground beef 10°—10% 12- 35 0.767 3 278 [48]
E. coli O157:H7 Model media NA® 12- 37 0.878 4 279 [61]
E. coli O157:H7 Model media NA 12- 37 0.943 4 2.48 [61]
S. typhimurium Lean beef 107° 15- 40 0.968 6 1.94 [58]
S. typhimurium Fat beef 1070 15- 40 0.966 6 2.90 (58]
S. typhimurium Chicken breast 10% 10-37 0.833 4 3.28 [60]
a CFU/g.

b CFU/cm?.

on quality concerns. This means that the spoilage
organism goes through the lag phase and into log phase
of growth much before we reach #4. The lag time for the
growth of S. typhimurium inoculated at 107 CFU/cm?
on the surface of sterile beef was modeled by Dickson
et al. [58] using the Gompertz function. They used
an exponential-decay function (11) to model the rela-
tionship between lag and generation times to the
temperature.

Y =D+ {E[e "]} (11)

where Y is the lag or generation time, 7 is the tempera-
ture, and D, E, and F are derived parameters. These
models were used successfully for time-temperature
integration, and prediction of S. typhimurium popula-
tions on inoculated beef tissue cooled at 6 or 9°C/h. As
shown in Fig. 3, a plot of the In of lag time in terms of
tp in Fig. 2 for both lean and fat samples vs. the tem-
perature gave straight lines. In these cases, the initial
inoculum on the surface of the beef was 107 CFU/cm?
(which is about 103> CFU/g). Using the shelf-life plot
approach of Taoukis and Labuza [59], the temperature
sensitivity (Q19) of the growth of Salmonella was 1.94
for lean meat and 2.90 for fatty meat.

The lag time for a number of pathogens as a function
of temperature was reported in several studies. Walls
and Scott [56] used the Gompertz function to model the
growth of L. monocytogenes inoculated at 103-10%
CFU/g in baby food containing chicken and vegetables
by the Gompertz function. Oscar [60] modeled the
growth of S. typhimurium inoculated at 103 CFU/g on
the surface of cooked chicken breast using a two-phase
linear growth model. Walls and Scott [56] measured
growth of E. coli O157:H7 inoculated at 10°-10* CFU/g
in raw ground beef and modeled the lag time by using
the Gompertz function. Buchanan and Bagi [61] reported
the lag time for E. coli O157:H7 inoculated in medium as
a function of temperature, initial pH, sodium chloride
content, and sodium nitrite. As shown in Table 1, most

studies have high linear correlation of In (lag time) vs.
temperature, when using the shelf-life plot method. The
low correlation for the ground beef sample is very likely
a result of too few temperatures (n=23) over a wide
range (12-35°C) of temperatures, thus emphasizing the
need for more temperatures. Modeling such data may
assist in predicting the time to detect pathogens at dif-
ferent temperatures; however, will not take into account
any temperature history effect.

Conclusions and future work

Predictive microbiology is a very powerful tool in
predicting cell-death-kinetics and the determination
of the conditions for the ‘commercial sterilization’
of canned foods or pasteurization of refrigerated
foods. In recent years, there has been a great interest in
predictive microbiology and in the use of modeling to
predict bacterial growth in meat and other foods. How-
ever, despite the extensive work in this field, it seems that
most models do not address the following basic ques-
tions.

1. Can we use models that were developed for initial
counts of 100 cells per gram or more for predicting
growth in systems that contain less than four cells
per 100 g?

2. Will the time to detect pathogens follow the same
temperature dependence as found for the lag phase
when using higher inocula levels?

3. What will be the effect of inoculum physiological
state (lag/log or stationary phase) on the growth
parameters below the detection level.

4. What is the effect of temperature fluctuations on
pathogen growth in meat and its products in the
lower lag phase, i.e. is there a temperature history
effect, and what direction does it take.

Answering these questions is a critical step towards
the implementation of predictive microbiology models
to the determination of the ‘safe shelf life’ of fresh meat
and meat products.
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