Chapter 28: Hard or Sharp Objects

Updated: 9/21/00
Author: Alan R. Olsen, U.S. Food and Drug Administration

Contents

Potential Food Safety Hazard

Foreign objects in foods are considered adulteration. Foreign objects can be broadly classified as 1) food safety hazards (e.g., glass) and 2) food nonsafety hazards (e.g., filth). Foreign objects that are physical hazards are referred to as hard or sharp objects. Hard or sharp objects are divided into metallic objects (Tables 28-1 and 28-2) and non-metallic objects (Table 28-3). Metallic objects are further divided into ferrous metals (Table 28-1) and non-ferrous metals (Table 28-2).

Hard or sharp foreign objects in food may cause traumatic injury including laceration and perforation of tissues of the mouth, tongue, throat, stomach and intestine as well as damage to the teeth and gums. From 1972 through 1997, the FDA Health Hazard Evaluation Board evaluated approximately 190 cases of hard or sharp foreign objects in food. These include cases of both injury and non-injury reported to FDA. The Board found that foreign objects that are less than 7 mm, maximum dimension, rarely cause trauma or serious injury except in special risk groups such as infants, surgery patients, and the elderly. The scientific and clinical literature supports this conclusion.

Hard or sharp natural components of a food (e.g. bones in seafood, shell in nut products) are unlikely to cause injury because of awareness on the part of the consumer that the component is a natural and intrinsic component of a particular product. The exception occurs when the food's label represents that the hard or sharp component has been removed from the food, e.g., pitted olives. The presence of the naturally occurring hard or sharp object in those situations (e.g., pit fragments in pitted olives) is unexpected and may cause injury. FDA has established Defect Action Levels for many of these types of unavoidable defects in other Compliance Policy Guides and therefore they are not subject to the guidance in this document (FDA, 1999).

The following tables list examples of the types of hard or sharp objects that pose a potential physical hazard.

Contents Table 28-1. Ferrous metal objects
Ferrous Metal Objects Potential Hazard Possible Source(s)
Hook Trauma Raw materials (fish hook)
Wire Trauma Raw materials (e.g., twist tie) 

Processing (e.g., screen/sieve)

Sliver Trauma Processing (e.g., container strap)
Staple Trauma Personal effects
Thumb tack Trauma Personal effects
Nail Trauma Maintenance
Key Dental Personal effects
Hand tool Dental Maintenance
Machinery part Dental Processing

Contents Table 28-2. Nonferrous metal objects
Nonferrous Metal Objects Potential Hazard Possible Source(s)
Shaving Trauma Maintenance (e.g., plumbing repair)
Wire Trauma Maintenance (e.g., electrical wire offcut) 

Processing (e.g., screen/sieve)

Sliver Trauma Processing
Jewelry Trauma/ Dental Personal Effects
Button Dental Personal effects
Stainless steel Dental Processing
Coin Dental Personal effects
Machinery part Dental Processing
Loose solder/ welding slag Dental* Maintenance
Lead weights/shot Dental* Raw materials
*May also pose a potential chemical hazard

Contents Table 28-3. Nonmetallic Objects
Nonmetallic Objects Potential Hazard Possible Source(s)
Bone (sliver/chip) Trauma Processing (e.g., hard/sharp bone pieces separated from flesh)
Wood splinter Trauma Raw materials (e.g., crate) 

Processing (e.g., table, tool handle)

Glass Trauma Processing (e.g., light fixture, jar)
Puncture vine Trauma Raw materials
Hard plastic Trauma Processing (e.g., tote bin, packaging) 

Personal effects (e.g., false fingernail)

Insulation Trauma Maintenance (e.g., asbestos fiber)
Insect Trauma Raw materials (e.g., sharp spine) 

Processing (e.g., dermestid setae)

Hard shell Trauma/ Dental Raw materials (Crustaceans)
Burr Trauma/ dental Raw materials
Thorn Trauma/ dental Raw materials
Button Dental Personal effects
Stone Dental Raw materials

Contents

Metal Inclusion

Metal fragments can cause injury to the consumer.

Metal-to-metal contact, especially in mechanical cutting or blending operations, other equipment with metal parts that can break loose, such as moving wire mesh belts, screens, portion control equipment, and can openers are likely sources of metal that may enter food during processing.

Metal inclusion should be considered a significant hazard at any processing step. Like all hazards, the presence of hard or sharp objects must be critically evaluated for its significance as a potential health hazard. Factors that must be taken into consideration include, but are not limited to, historical processing data, lost or broken processing equipment parts, and consumer complaints from both institutional and retail customers.

Not all metal equipment is a significant potential metal inclusion hazard. Fillet skinners, metal mesh conveyor belts, and similar equipment are often not reasonably likely to cause metal inclusion hazards.

Following the determination that metal inclusion can result in a significant food safety hazard, then a control measure can be used to prevent or eliminate the inclusion of metal fragments, or reduce the likelihood of occurrence of the hazard to an acceptable level (FDA, 1998).

Contents

Control Measures

Contents

Metal inclusion

Control measures for "metal inclusion" can include:

Contents

Nonmetallic objects

Control measures for nonmetallic objects can include:

Contents

FDA Guidelines

Contents

Hard or sharp objects

Foods are considered adulterated if:

Contents

Metal inclusion

Contents

Critical Aspects of Processes

Contents

Metal Inclusion

Critical aspects of processes may include:

Contents

Analytical Procedures

Contents

References, Including General Physical Hazard References

Anonymous 1983. X-ray sorter detects and rejects rocks and foreign matter in almonds. Food Engineering 55(10):131.

Anonymous. 1987. Automatic detection of foreign matter in food. British Food Journal 89(938):52-53,55.

Anonymous. 1987. Meat and Poultry Inspection Manual. U.S. Dept. Agriculture. Washington DC, 328 pp.

AOAC 1995a. Glass in meat scraps. Sec. 16.9.02, Method 950.88. In Official Methods of Analysis of AOAC International. 16th ed., P.A. Cunniff (Ed.), p. 16-24. AOAC International, Gaithersburg, MD.

AOAC 1995b. Shell in clams and oysters (canned): Digestion method. Sec. 16.9.05, Method 968.37. In Official Methods of Analysis of AOAC International. 16th ed., P.A. Cunniff (Ed.), p. 16-25. AOAC International, Gaithersburg, MD.

AOAC 1995c. Shell in crabmeat (canned): Digestion method. Sec. 16.9.03, Method 968.36. In Official Methods of Analysis of AOAC International. 16th ed., P.A. Cunniff (Ed.), p. 16-24. AOAC International, Gaithersburg, MD.

Baker, S.P. and Fisher, R.S. 1980. Childhood asphyxiation by choking or suffocation. JAMA 244(12):1343-1346.

Bearn, F.A. 1949. Foreign bodies in the abdomen. Lancet, ii, p. 1244.

Bhatia, P.L. Hypopharyngeal and oesophagial foreign bodies. East African Medical Journal 66(12):804-811.

Broderick, M. 1992. Contaminant management systems within the confectionery industry. In Proceedings of the Forty-Sixth Annual Production Conference, p. 95-97, Pennsylvania Manufacturing Confectioners' Association, Hershey, PA.

Chapple, C.F. and McGowen, W.B. 1949. Foreign bodies in the abdomen. Lancet, ii, p. 627-628.

Cohen, H. 1968. Glass gluttony and gastrointestinal gouging. JAMA 206(7):1582.

Corlett, D.A. and Stier, R.F. 1991. Risk assessment within the HACCP system. Food Control 2(2): 71-72.

Eisenberg, W.V. 1974. Inorganic particle content of foods and drugs. Environmental Health Perspectives 9:183-191.

Eldridge, W.W. 1961. Foreign bodies in the gastrointestinal tract. JAMA 178(6):665-667.

Esclamado, R.M. and Richardson, M.A. 1987. Laryngotracheal foreign bodies in children. AJDC 141(3):259-262.

FDA. 1998. Metal Inclusion. Ch. 20. In Fish and Fishery Products Hazards and Controls Guide. 2nd ed., p. 223-230. Department of Health and Human Services, Public Health Service, Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Seafood, Washington, DC.

FDA. 1999. Foods - Adulteration Involving Hard or Sharp Foreign Objects. FDA/ORA Compliance Policy Guide, Chapter 5, Sub Chapter, 555, Section 555.425 (Issued: 3/23/1999). Department of Health and Human Services, Public Health Service, Food and Drug Administration, Washington, DC.

Freeman, C.C. 1978. Brine extraction method for bones & scales in grated tuna. Laboratory Information Bulletin No. 2200. USFDA, Rockville, MD.

Gardner, L.I. and Heinicke, H.J.. 1950. Chipped glass as a probable cause of retropharyngeal abscess in an infant. New England J. Med. 242: 975-976.

Gecan, J.S., Cichowicz, S.M., and Brickey, P.M. 1990. Analytical techniques for glass contamination of food: A guide for administrators and analysts. J. Food Protection 53(10):895-899.

Gorham, J.R. 1994. Hard Foreign Objects in Food as a Cause of Injury and Disease: A Review. Ch. 13, In Foodborne Disease Handbook: Diseases Caused by Hazardous Substances, Vol. 3, Y.H. Hui, J.R. Gorham, K.D. Murrell, and D.O. Cliver (Eds.), p. 615-626. Marcel Dekker, Inc., New York, NY.

Gunn, A. and Cantab, M.B. 1966. Intestinal perforation due to swallowed fish or meat bone. Lancet, ii, p. 125-128.

Haines, W.S. 1926. Death from Pounded Glass and Other Mechanical Irritants. In Legal Medicine and Toxicology, 2nd ed., Vol. 2, F. Peterson, W.S. Haines, and R.W. Webster (Eds.), p. 888-897.W.B. Saunders Co., Philadephia, PA.

Hancock, G.C. 1927. Occurrence of glass fragments in foods packed in glass containers. Reports on Public health and Medical Subjects No. 37. Ministry of Health, London. 36 pp.

Harris, C.S., Baker, S.P., Smith, G.A., and Harris, R.M. 1964. Childhood asphyxiation by food. JAMA 251(17):2231-2235.

Hart, R.H. 1968. Glass gluttony and gastrointestinal gouging. JAMA 206(7):1582.

Honaas, T.O. and Shaffer, E.A. 1977. Endoscopic removal of a foreign body perforating the duodenum. CMA Journal 116(2):164, 169.

Houghton, L.W. 1949. Foreign bodies in the abdomen. Lancet, ii, p. 1154-1155.

Hyde, J.S. 1949. Peritonitis due to ingestion of glass chipped from baby-food container. J. Pediatrics 34:219-222.

Hyman, F.N., Klontz, K.C. and Tollefson, L. 1993. Food and Drug Administration surveillance of the role of foreign objects in foodborne injuries. Publ. Health Rpt. 108(1): 54-59.

Janssen, W.F. 1981. The detection and elimination of foreign materials. The Manufacturing Confectioner 61(1):41-44.

Keith, F.M., Charrette, E.J.P., Lynn, R.B., and Salerno, T.A. 1980. Inhalation of foreign bodies by children: a continuing challenge in management. CMA Journal 122(1):52-57.

Lehman, H.J. 1958. Glass and metal fragments in food and beverages. Quarterly Bull. Assoc. Food and Drug Off. 22(1): 24-26.

Lifschultz, B.D. and Donoghue, E.R.. 1996. Deaths due to foreign body aspirations in children: The continuing hazard of toy balloons. J. Forensic Sci. 41(2): 247-251.

Lima, J.A. 1989. Laryngeal foreign bodies in children: a persistent, life-threatening problem. Laryngoscope 99(4):415-420.

Mayo, G. 1988. New methods make advances in foreign body detection. Food Engineering 60(11):136,138.

Meislin, H. and Kobernick, M. 1983. Corn chip laceration of the esophagus and evaluation of suspected esophageal perforation. Annals of Emergency Medicine 12(7):455-457.

Melzer-Lange, M., Van Howe, R., and Losek, J.D. 1988. Esophageal foreign body presenting with altered consciousness. A.J.D.C. 142:915-916.

Mittleman, R.E. 1984. Fatal choking in infants and children. J. Forensic Medicine and Pathology 5(3):201-210.

Olsen, A.R. 1988. Rapid procedure for the examination of shrimp for filth. Laboratory Information Bulletin No. 3172. USFDA, Rockville, MD.

Olsen, A. R. (Ed.). 1998. FDA Technical Bulletin Number 5: Macroanalytical Procedures Manual. http://vm.cfsan.fda.gov/~dms/mpm-toc.html (7 September, 1999)

Olson, A.R. 1998. Regulatory action criteria for filth and other extraneous materials. I. Review of hard or sharp foreign objects as physical hazards in food. Regulatory Toxicology and Pharmacology 28:181-189.

Read, K.E.E. 1946. Ulceration of a foreign body through the small intestine. Brit. Med. J. 1(4443): 315.

Reilly, J.S., Cook, S.P., Stool, D. and Rider, G. 1996. Prevention and management of aerodigestive foreign body injuries in childhood. Pediatr. Clin. North Amer. 43(6):1403-1411.

Rhodehamel, E.J., 1992. Overview of biological, chemical, and physical hazards. Ch. 3. In HACCP Principles and Applications, p. 8-28. Pierson, M.D. and Corlett, D. A. (Eds.) Van Nostrand Reinhold. New York.

Rhodeheaver, J.R., 1996. Inspection procedures for foreign materials. U.S. Dept. Agric. File Code 172-A-1: 1-18.

Rider, G. and Wilson, C.L. 1996. Small part aspiration, ingestion and choking in small children: Findings of the small parts research project. Risk Anal. 16(3): 321-330.

Rothman, B.F. and Boeckman, C.R.1980. Foreign bodies in the larynx and tracheobronchial tree in children. Ann. Otol. Rhino. Larynx. 5(1):434-436.

Simmons, J.S. and von Glahn, W.C. 1918. The effect of "ground glass" on the gastrointestinal tract of dogs. JAMA 71: 2127.

Slater, L.E. 1976. Product probing X-rays become on-line sleuths. Food Engineering 48(4): 80-83.

Snyder, O.P. 1992. HACCP - an industry food safety self-control program - Part IV. Dairy, Food and Environmental Sanitation 12(4):230-232.

Steele, J.D. 1948. Mediastinitis due to ingestion of glass. J.A.M.A. 136:554-555.

Travers, E.H. 1949. Perforation of intestine by fish-bone. Lancet, ii, p. 466.

Vane, D.W., Pritchard, J., Colville, C.W., West, K.W., Eigen, H, and Grosfeld, J.L. 1988. Bronchoscopy for aspirated foreign bodies in children. Arch. Surg. 123:885-888.

Webb, W.A. 1988. Management of foreign bodies of the upper gastrointestinal tract. Gastroenterology 94(1):204-216.

Wetli, C.V. and Mittleman, R.E. 1962. The fatal café coronary. JAMA 247(9):1286-1288.

Wollen, A. 1982. New ART form in bottle inspection. Soft Drinks 36(11):473,475.