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Food Mycotoxins: An Update
PATRICIA A. MURPHY, PH.D., SUZANNE HENDRICH, PH.D., CINDY LANDGREN, PH.D., AND CORY M. BRYANT, EDITOR

The Institute of Food Technologists has issued this Scientific Status Summary to update readers on the science of
fungal toxins.
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Unavoidable, natural contaminants in foods may have ei-
ther chemical or biological origin. Mycotoxins—toxic sec-
ondary metabolites of fungi—are biological in origin. De-

spite efforts to control fungal contamination, toxigenic fungi are
ubiquitous in nature and occur regularly in worldwide food sup-
plies due to mold infestation of susceptible agricultural products,
such as cereal grains, nuts, and fruits. Thousands of mycotoxins ex-
ist, but only a few present significant food safety challenges. The
natural fungal flora associated with foods is dominated by three
genera—Aspergillus, Fusarium, and Penicillium, which except for
the Fusarium plant pathogens, may include commensals as well
as pathogens. The chemical structures of mycotoxins produced by
these fungi are very diverse (refer to Figure 1 for structures), as are the
characteristics of the mycotoxicoses they can cause (ICMSF 1996).

Ergotism is the oldest identified mycotoxicosis in humans. This
mycotoxin represents a group of alkaloids that grow on the heads of
grasses, such as wheat and rye. Ergot was responsible for a disease
of the Middle Ages known as “St. Anthony’s Fire,” so named for the
burning sensation caused in victims’ limbs. The Spartans apparently
suffered an ergot epidemic in 430 B.C. and European epidemics
date back as far as 857 A.D. (Bove 1970). Ergotism has also been
associated with the Salem witch trials in the 1600s in Massachusetts
(Caporael 1976). More recent outbreaks, associated with economic
upheaval and war, have occurred in Russia (1924 and 1944), Ireland
(1929), France (1953), and Ethiopia (1978). Although ergot poisoning
continues to pose a challenge for the livestock industry, the toxin is
less of a challenge for the food industry because current food quality
control procedures screen out ergot-infected grains.

Of the thousands of existing mycotoxins, a few hundred are asso-
ciated with food and only a handful present food safety challenges
to the farm-to-fork food continuum. At the farm level, mold growth
can result in reduced crop yields and livestock productivity stem-
ming from illness or death due to consumption of contaminated
feed. In food manufacturing, destruction of mycotoxins by conven-
tional food processing is difficult because they are typically highly
resistant and detection is complicated due to limitations in analyt-
ical methodology. In the marketplace, mycotoxins can be a hurdle
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to international trade, leading to increased regulation of foods and
feeds that may contain them and removal from the market of com-
modities not meeting regulatory limits (see Table 1 for US, EU, and
Codex guidance/regulations).

When present in foods in sufficiently high levels, these fungal
metabolites can have toxic effects that range from acute (for ex-
ample, liver or kidney deterioration), to chronic (for example, liver
cancer), mutagenic, and teratogenic; and resulting symptoms range
from skin irritation to immunosuppression, birth defects, neuro-
toxicity, and death (ICMSF 1996). Aflatoxin B1 (AFB1), fumonisins,
and patulin are suspected human carcinogens. Deoxynivalenol and
other trichothecenes as well as AFB1 are likely to exert immunosup-
pressive effects, and fumonisin B1 (FB1) may contribute to neural
tube defects. Renal dysfunction due to ochratoxin A exposure (sus-
pected in Balkan endemic nephropathy) is also a potentially signif-
icant problem, especially as this could exacerbate impaired renal
function in individuals with diabetes, a burgeoning worldwide epi-
demic that is highly likely to grow. There is also uncertainty related to
the effects of chronic, low-level, long-term exposure to single and/or
multiple mycotoxins, which may be the case even for those individ-
uals consuming a diverse diet (Lopez-Garcia and others 1999).

Environmental factors affect mycotoxin presence in raw and
stored commodities. Data on optimal temperature and water activ-
ity for toxin production by Aspergillus, Penicillium, and Fusarium
spp. in culture are provided in Table 2. Traditionally, control of my-
cotoxin contamination of foods has been attempted through control
of water activity, pH, and quality control of incoming ingredients.
Novel control avenues are emerging, including availability of ge-
netically modified grains with increased insect resistance and, thus,
lowered rates of fungal infection; improved management of grain
ingredients; and inclusion of controls for mycotoxins in food manu-
facturing Hazard Analysis and Critical Control Point (HACCP) plans.

Genotyping techniques have shed new light on mycotoxin-
producing fungi and provided the foundation for advances in
detection methodology. Historically, fungi have been identified on
the basis of traditional taxonomic characteristics (for example, mor-
phological features); more recently, the tools of molecular biology
have enabled genetic analysis and classification on the basis of nu-
cleic acid sequence. Since analytical methods for detecting mycotox-
ins have become more prevalent, sensitive, and specific, surveillance
of foods for mycotoxin contamination has become more common.
Table 3 provides information from surveys that have been conducted
around the world with a diversity of mycotoxins detected.
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Figure 1 --- Chemical structures of
mycotoxins found in foods

This Scientific Status Summary addresses mycotoxins on the
basis of key characteristics or scientific advances unique to each
toxin. Since the publication of the previous Summary (IFT 1986 ) on
this topic, a new type of mycotoxin—the fumonisins—produced by
Fusarium spp. (Gelderblom and others 1988) has been isolated, and
much has been accomplished in the areas of toxicology, detection,
and control of mycotoxins. This Summary focuses on the scientific
advances made after 1986.

Mycotoxins Impacting Food Production
and Manufacturing

Patulin
Apricots, grapes, peaches, pears, apples, olives, cereals, and low-

acid fruit juices (notably apple, grape, and pear) are the commodi-
ties most commonly infected by the pathogens that produce pat-
ulin (Speijers 2004). Patulin is not found in intact fruit because it is
damage to the surface of fruit that makes it vulnerable to Penicil-
lium infection (Sewram and others 2000). Thus, the critical point
for controlling fruit quality is the point at which the fruit enters the
processing line.

Recent studies have determined that patulin is not carcinogenic,
thereby causing a decline in research interest (Wouters and Speijers
1996). Hence, most of the patulin toxicity research conducted since
1995 has focused on genotoxicity.

Historically, apple juice has been a product of high concern with
regard to patulin contamination. Therefore, many of the investiga-
tions on patulin stability during food processing have focused on
apple juice. Bissessur and others (2001) reported that filtration to
clarify juices and concentrates reduced patulin levels up to 40%.
Lipowska (1990) observed that patulin was unstable during fer-
mentation of apple juice to cider and was completely destroyed by
treatment with 0.125% sulfur dioxide. However, findings pertain-
ing to the effect of heat on the toxin vary. Although Woller and
Majreus (1982) reported no loss of patulin in thermal processing
of apple juice, Wheeler and others (1987) reported partial patulin
destruction using high temperature-short time pasteurization, and
Kadakal and Nas (2003) reported a 25% loss in naturally contami-
nated apple juices during pasteurization or evaporation conditions
(70 to 100 ◦C). It is thought that the pH of the apple juices lends
heat stability to patulin, accounting for the variability in results.
Because of this, it is important to assess the effectiveness of condi-
tions specific to each process before implementing a process control
measure.

Ochratoxin
Ochratoxin is present in a large variety of foods because it is pro-

duced by several fungal strains of the Penicillium and Aspergillus
species that have varied physiologies and ecologies. The presence
of chlorine in its structure (Figure 1) makes it unique. Ochratoxin is
considered to be nephrotoxic, teratogenic, and immunotoxic, and
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has been classified by the IARC as a Class 2B carcinogen, probable
human carcinogen.

Ochratoxin A, the main toxin in this group, is found in wheat, corn,
and oats having fungal infection and in cheese and meat products
of animals consuming ochratoxin-contaminated grains (Aish and
others 2004). A. ochraceus is found on dry foods such as dried and
smoked fish, soybeans, garbanzo beans, nuts, and dried fruit. A. car-
bonarius is the major pathogen in grapes and grape product includ-
ing raisins, wines, and wine vinegars. Although reported to occur
in foods around the world, the main regions of concern are Europe
and, for some foods, Africa. The Joint Expert Committee on Food
Additives of the Food and Agriculture Organization of the United
Nations and the World Health Organization (JECFA 2001) presented
data indicating that cereals, wine, grape juice, coffee, and pork are
the major sources of human ochratoxin exposure, at levels of 58%,
21%, 7%, 5%, and 3% of total ochratoxin intake, respectively. Levels
reported range from 100 to 700 ng/kg in cereals, 30 to 9000 ng/L
in European wines, 170 to 1300 ng/kg in coffee, and 150 to 2900
ng/kg in pork (Sage and others 2004). Ochratoxin presence in Euro-
pean wines is a relatively recent concern, with red wines typically
containing higher ochratoxin levels than rosé or white wines.

Because of the large variety of food matrices in which ochratoxin
has been found, there is no universally suitable method of analysis.
Differences in extraction conditions and clean-up are as varied as
the foods. Analysis is typically accomplished by high performance
liquid chromatography, although liquid chromatography—mass
spectrometry— is an important secondary confirmation technique.

The impact of processing on ochratoxin A-contaminated foods is
not very well understood. Polishing and milling of wheat (to remove
outer layers for white flour production) lowered ochratoxin levels;
however, no effect was seen for whole-wheat flours (Osborne and
others 1996). Chelkowski and others (1981) reported equal distribu-
tion of ochratoxin A into the bran and flour fractions upon dry milling
of wheat and barley. Van der Stegen and others (2001) reported that
ochratoxin was relatively stable during heat processing; however,
toxin levels were reduced 70% to 96% during coffee bean roasting,
and Heilmann and others (1999) reported similar reductions during
decaffeination. Wet milling of corn resulted in reductions of ochra-
toxin levels in germ and grits of 96% and 49%, respectively (Wood
1982). And McKenzie and others (1997) reported that ozonolysis is
effective in destroying ochratoxin in aqueous model systems.

Zearalenone
A myco-estrogen, zearalenone, has attracted recent attention due

to concerns that environmental estrogens have the potential to dis-
rupt sex steroid hormone functions. Occasional outbreaks of zear-
alenone mycotoxicosis in livestock are known to cause infertility.
Alternatively, derivatives of zearalenone are used in some livestock
feeds for growth promotion (for example, Ralgro� in beef cattle), as
alternatives to the more potent and controversial synthetic estrogen,
diethylstilbestrol.

This toxin is found almost entirely in grains and in highly
variable amounts ranging from a few nanograms per gram
to thousands of nanograms per gram. The appearance of
mold on grain plants cannot be relied upon to warn of
toxin production because Fusarium-infected grain does not
necessarily appear visibly moldy in the presence of high
concentrations of mycotoxins (Murphy and others 1996). The aver-
age human intake of zearalenone was estimated to be approximately
0.02 μg/kg bw/d on the basis of limited data obtained in Canada,
the United States, and Scandinavian countries, but it is likely that
intakes are greater in countries from the regions of the world having
less well-controlled grain storage systems.
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Table 2 --- Examples of optimal conditions for mycotoxin production

Microorganism (mycotoxin) Temp (◦C) Aw Reference

Aspergillus flavus, A1 parasiticus (aflatoxin) 33 0.99 Hill and others 1985
Aspergillus ochraceus (ochratoxin) 30 0.98 Ramos and others 1998
Penicillium verrucosum (ochratoxin) 25 0.90 to 0.98 Cairns and others 2003
Aspergillus carbonarius (ochratoxin) 15 to 20 0.85 to 0.90 Mitchell and others 2003
Fusarium verticillioides, F1 proliferatum (fumonisin) 10 to 30 0.93 Marin and others 1999
Fusarium verticillioides, F. proliferatum (DON) 11 0.90 Hope and Magan 2003
Fusarium graminearum (zearalenone) 25 to 30 0.98 Sanchis 2004
Penicillium expansum (patulin) 0 to 25 0.95 to 0.99 Sanchis 2004

aThe majority of data generated on environmental optima for mycotoxin production was obtained from cultures rather than actual field or storage environments.

Genotoxicity is a reported concern with respect to zearalenone.
Although this estrogenic compound showed no mutagenicity in
Ames tests (1 to 500 μg zearalenone/agar plate), the substance in-
duced chromosomal anomalies in some lymphocyte, oocyte, and
kidney cell cultures when present within a range of 0.1 to 20 μM
(Stopper and others 2005). This dose range is difficult to extrapolate
to likely human exposures because no human bioavailability esti-
mates are available. With estimated human intake of approximately
1 to 2 μg per person, however, occurrence of blood or tissue con-
centrations remotely close to 0.1 M (approximately 30 μg/L) seems
extremely unlikely.

A related fungal metabolite, α-zearalenol, which has about 3-fold
more estrogenic potency than zearalenone, was recently shown to
inhibit atherogenesis, lowering plasma LDL-cholesterol and limit-
ing aortic plaque formation in ovariectomized rabbits fed a high
dose of cholesterol. The effective estrogenic dose of α-zearalenol
was >0.5 mg/kg/d for 12 wk (Dai and others 2004). Except as a po-
tential pharmaceutical, such a large dose is of little practical value.
Common human exposure levels for zearalenone or related com-
pounds would not be expected to exert such health benefits.

Aflatoxins
Aflatoxins may contaminate many crops including peanuts, corn,

cottonseed, Brazil nuts, pistachios, spices, copra (dried coconut),
and figs with widespread contamination in hot and humid regions
of the world. These mycotoxins occur in several chemical forms,
designated aflatoxin B1, B2, G1, G2, and M1 (Figure 1). “B” and “G”
refer to the blue or green fluorescence observed upon exposure of
the toxin to ultraviolet irradiation. M1 is the predominant metabolite
of AFB1 in milk from lactating humans and animals that consume
AFB1-contaminated food or feed. According to the IARC, there is
sufficient evidence to conclude that AFB1 and mixtures of B1, G1,
and M1 are proven human carcinogens, thereby warranting Group 1
carcinogen status. M1 and B2 are designated as Group 2B probable
human carcinogens (IARC 1993a).

AFB1 is metabolized by the liver through the cytochrome P450
enzyme system to the major carcinogenic metabolite AFB1-8,9-
epoxide (AFBO), or to less mutagenic forms such as AFM1, Q1,
or P1 (Crespi and others 1991, Shimada and Guengerich 1989). As
shown in Figure 2, there are several pathways that AFBO can take,
one resulting in cancer, another in toxicity, and others in AFBO
excretion. The exo-form of AFBO readily binds to cellular macro-
molecules including genetic material, for example, proteins and
DNA, to form adducts. It is the formation of DNA-adducts, such
as with N7-guanine, that leads to gene mutations and cancer. One
such mutation is suspected to occur in the human p53 tumor sup-
pression gene at codon 249 (AGG, Eaton and Gallagher 2004). Stud-
ies have shown that AFBO induces conversions from G (guanine)
to T (thymine) at the 3rd nucleotide of the codon, making it a mu-
tational “hotspot.” This mutation has been found with greater fre-
quency among patients with hepatocellular carcinomas in areas of

high-risk aflatoxin exposure (IARC 1993a,b). The AFB1-N7-guanine
adduct is excreted in the urine of those infected. Urinary excretion
not only serves as evidence that humans have the necessary bio-
chemical pathways for carcinogenesis (IARC 1993a,b), but also pro-
vides a reliable biomarker for exposure to AFB1 (Groopman and
Kensler 2005).

Inhibition of AFBO formation (through disruption of the cy-
tochrome P450 system) and/or adduct formation are important
strategies for prevention of these damaging mutations. In animal
models, metabolic detoxification of AFBO is facilitated by induction
of glutathione S-transferase (GST). This enzyme catalyzes the reac-
tion that binds glutathione to AFBO and renders it noncarcinogenic.
It is interesting to note that mice, which are resistant to aflatoxin car-
cinogenesis, have GST activity levels 3 to 5 times higher than rats,
which are susceptible—and humans have lower GST activity than
rats. Synthetic dithiolthione compounds, such as oltipraz (an FDA
approved antischistosomal drug), and antioxidants, such as buty-
lated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and
ethoxyquin, are among the most effective against aflatoxin carcino-
genesis (Bammler and others 2000, IARC 1993a,b, Kwak and oth-
ers 2001). Human clinical trials in China showed that a daily dose
(125 mg/d) of oltipraz significantly increased excretion of AFB1-
mercapturate, a derivative of GST reaction with AFB1 (Kwak and
others 2001); chlorophyllin has also been shown to protect against
human AFB1 toxicity (Kensler and others 2004). It remains to be seen
if long-term administration of oltipraz could lessen human risk for
AFB1 carcinogenesis; reduction of aflatoxin intake, however, would
result in reduced liver cancer rates.

Simultaneous hepatitis B and AFB1 infections commonly occur
in regions with high rates of hepatocellular carcinoma (HCC). A co-
hort study of more than 18000 individuals in China clearly showed
a relative risk (measure of how much a particular risk factor [for
example, AFB1] influences the risk of a specified outcome [for ex-
ample, HCC]) for HCC of 3.4 in subjects who showed AFB1 exposure
(urinary AFB1-N7-guanine; due to AFB1 exposure, a person is 3.4
times more likely to develop HCC), whereas relative risk for subjects
positive for hepatitis B antigen was 7.3; combination of hepatitis B
and AFB1 exposure increased relative risk for HCC to 59 (Qian and
others 1994). Thus, AFB1 is an independent and possibly strongly
potentiating factor for human HCC.

Human aflatoxicoses continue to be an occasional, serious prob-
lem. For example, a severe outbreak was reported in Kenya in 2002
(CDC 2004). Half of the maize food samples tested in districts as-
sociated with this outbreak had AFB1 levels >20 ppb (the action
level for AFB1 in Kenya), with 3% to 12% of samples, depending on
the district, containing >1000 ppb and some samples containing
as much as 8000 ppb AFB1. This outbreak had at least a 39% in-
cidence of death (317 cases with 125 deaths) resulting from acute
hepatotoxicity.

Immunotoxicity seems a likely effect of human AFB1 exposure
due to the numerous animal studies in which lymphocyte (T-cell,
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Figure 2 --- Overview of
biotransformation pathways for
aflatoxin B1 (Bammler and others
2000)

macrophage, natural killer cell, and B-cell) immune functions were
suppressed or perturbed by this mycotoxin. Immunoglobulin A (IgA)
response to some vaccine challenges was suppressed in Gambian
children with detectable AFB1-albumin adducts (a complex formed
between the toxin and the biological material, in this case a protein,
that may either be repaired or mutate, in which case it could lead to
cancer as discussed above) (Turner and others 2003). Decreased hu-
man growth was associated with increasing AFB1-albumin adduct
formation in African children (Gong and others 2002). Vitamin A
and zinc status were not related to AFB1 exposure (Gong and others
2004). This suggests that AFB1 exacerbates protein calorie malnutri-
tion and thereby growth suppression; suppressed immune function
is a likely correlate to AFB1 infection.

Some food processing methods have been shown to result in
reduction or elimination of aflatoxins. Roasting peanuts resulted
in greater reductions of chemically detectable aflatoxins than boil-
ing (Njapau and others 1998). Fermentation of wheat flour dough
reduced detectable aflatoxin by approximately 50%, while baking
of the dough resulted in lesser reductions ranging from 0 to 25%
(Scott 1991). Traditional nonalkaline toasting and boiling processes
to produce pinole (a meal of ground corn and beans) from aflatoxin-
contaminated corn were reported to significantly reduce chemi-
cally detectable aflatoxin (Mendez-Albores and others 2004a). High-
temperature (121 ◦C) alkaline treatment of contaminated corn prior
to frying resulted in very low levels of chemically detectable afla-
toxin (Camoou-Arriola and Price 1989). Alkaline processing or nix-
tamalization (the traditional process of cooking corn in lime wa-
ter to produce nixtamal that is then ground to form masa) of corn
also resulted in significant reductions of aflatoxin (Torres and others

2001). Although Cazzaniga and others (2001) reported that extrusion
processing (up to 180 ◦C) of corn did not achieve substantial de-
struction of aflatoxin, Cheftel (1989) reported significant reductions
in detectable aflatoxin during extrusion of rice flours; differences
in results may be due to differences in extruder design (Cazzaniga
and others 2001). McKenzie and others (1997) reported that treat-
ment with ozone destroyed AFB1 and G1 in aqueous model systems;
and Prudente and King (2002) reported 92% reduction in contami-
nated corn, with no reformation of the mycotoxin post-treatment.
There are reports of reformation or reactivation of aflatoxins post-
process. For example, initial loss of detectable aflatoxin was followed
by detection upon acidification of the masa flour. The researchers
speculated that this acidification could happen after consumption
of nixtamalized aflatoxin-contaminated corn (Mendez-Albores and
others 2004b).

Trichothecenes
Approximately 180 trichothecenes are known to exist, but only

a few are significant to human health. This Summary focuses on
deoxynivalenol (DON), the most prevalent of the trichothecenes in
human foods, although related mycotoxins such as 3-acetyl DON,
T-2 toxin, and nivalenol also occur with some regularity. The biosyn-
thetic pathway for trichothecene production is known for several
Fusarium species (Desjardins and others 1993); 11 genes involved
in the trichothecene pathway have been cloned (Brown and others
2001). These findings allow researchers to pursue traditional plant
breeding and transgenic approaches to mycotoxin control that will
be discussed in more detail in a later section of this summary.
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Inhibition of protein synthesis is thought to be the fundamen-
tal mechanism of trichothecene toxicity. Ehrlich and Daigle (1987)
showed that DON and T-2 toxin caused polyribosomal breakdown
in mammalian cell lines. 3-acetyl DON had similar lethality to DON
in vivo because it was converted to DON; however, the addition of a
hydroxyl group at the C-4 position, as in nivalenol, decreased lethal
dose in mice by 6-fold compared with DON (Thompson and Wan-
nemacher 1986).

More recently, elucidation of DON toxicity mechanisms has fo-
cused on differential responses of mRNA and translation products
following DON exposure of mice. Cell signaling pathways are acti-
vated by 1 mg DON/kg bw, through gene induction and activation of
several nitrogen-activated protein kinases. DON (≥100 ng/mL) acti-
vates hematopoetic cell kinase and double-stranded RNA-activated
protein kinase, which leads to apoptosis (programmed cell death)
(Pestka and others 2004). The way in which symptoms relate to these
molecular events remains to be clarified. Numerous studies have
shown that DON is immunotoxic in animal models. Host resistance
assays offer the most definitive assessment of such effects. Male
BALB/c mice given 2 ppm DON (in water) 2 wk prior to and con-
current with oral intubation of Salmonella enteritidis (3 × 106 CFU)
had increased bacterial counts postinfection, indicating that their
immune systems were repressed by DON exposure (Hara-Kudo and
others 1996). Although human DON exposure may be within the
range of doses shown to be immunotoxic in rodents, human expo-
sures and responses to this toxin are ill defined. Meky and others
(2003) showed that a small number of urine samples from humans
in a high risk region (with greater wheat and corn food intake) had
37 ng DON/mL (14 to 94 ng/mL range), whereas samples from a low-
risk region had 12 ng DON/mL (4 to 18 ng/mL range), a significant
difference.

Several thousand people were affected by gastrointestinal distress
in an incident in the Kashmir Valley of India in 1987. Ninety-seven
reported feelings of fullness and mild to moderate abdominal pain
within 15 min to 1 h after consuming their breakfast or evening snack
(consisting of locally produced or homemade wheat bread). Other
reported symptoms included throat irritation (63%), diarrhea (39%),
vomiting (7%), blood in the stools (5%), and facial rash (2%). In-
creased incidence of upper respiratory tract infections was reported
in children who had consumed the wheat bread for more than a
week. Illnesses subsided when consumption of the bread ceased.
Samples of flours and wheat in the local markets contained DON
(11/17 had toxin levels of 0.346 to 8.38 μg/g), nivalenol (2/19 had
levels of 0.03 to 0.1 μg/g), T-2 toxin (4/19 had levels of 0.55 to 4 μg/g),
and 3-acetyl DON (4/19 had levels of 0.6 to 2.4 μg/g), but were nega-
tive for aflatoxins and ergot alkaloids (Bhat and others 1989). These
results provide solid evidence for the potential health implications
of fairly low exposure to the toxin and emphasize the need for more
work to define human risk from this common foodborne contami-
nant. The need to define the role of DON in impairment of human
immune function is further emphasized given the growing number
of epidemics of severe infectious illnesses (for example, HIV) and
world population of immune-impaired individuals (young children
and the elderly).

Two AOAC� Official Methods—thin layer and gas chromatogra-
phy (GC) assays—exist for DON quantification (AOAC 2005). High-
performance liquid chromatography methods have been peer-
reviewed (Trucksess and others 1998), but are not yet approved by
AOAC International. Despite the availability of approved methods,
variability in sampling and testing procedures presents difficulties
for precise determinations. Inexpensive, rapid assays for DON are
not standardized or widely available. Development of molecular
imprint polymer technology for DON detection (Weiss and others

2003) is promising in that once the polymer matrix is formed, it
may be regenerated by solvent washing and used repeatedly, com-
pared with immunoaffinity columns, which cannot be regenerated.
Because prevention of DON contamination seems highly unlikely,
and detoxification methods, discussed below, are far from practical
at this point, DON detection deserves greater attention within the
food science community.

The Council for Agricultural Science and Technology (CAST 2003)
estimated that the annual US cost due to DON contamination of
human food crops is $637 million. The CAST model included 727
samples of wheat and corn foods from data gathered from FDA and
private surveys conducted during 1995 to 1997. Food losses were
based on samples with >1 μg/g DON. DON contamination was
greater than 1 μg/g in 6.9% of corn samples and 12.4% of wheat
samples.

Edwards (2004) reviewed the environmental conditions that fa-
vor DON accumulation in food crops. Minimal tillage, nitrogen fer-
tilizers, application of azoxystrobin (fungicide) or glyphosate (her-
bicide), and production of grains where maize had been grown the
previous year were the main risk factors associated with increased
DON accumulation. Biological and insect control shows promise, in
laboratory environments, for reducing DON contamination levels,
but little or no progress has been made in the field.

Current food processing techniques do not significantly con-
tribute to DON remediation, either by reduction or detoxification,
in human or animal foods. The combination of high pH (10.0) and
high heat (100 ◦C for 60 min and 120 ◦C for 30 min) treatment of
DON in an aqueous buffer solution produced partial to complete
destruction (Wolf and Bullerman 1998). Treatment of wheat and
corn with approved food additives, such as dry and aqueous sulfite
gas and ozone, has also been investigated. Aqueous sodium bisul-
fite had the greatest reductive effect by reaction with DON to pro-
duce acid-stable sulfonate adduct (DON-S); however, this adduct
was hydrolyzed to release DON under alkaline conditions. Upon
bread baking, the toxin levels increased by 50 to 75% due to alkaline
hydrolysis of the DON sulfonate adduct (Young and others 1986).
DON levels in corn were reduced by as much as 95% by autoclaving
at 121 ◦C for 1 h with 8.33% aqueous sodium bisulfite. This corn was
mixed with a basal diet and fed successfully to pigs, indicating that
this treatment may be a viable option depending on the end use of
the contaminated grain (Young and others 1987).

Removing DON from feed barley by an abrasive dehulling
(pearling) process was shown to significantly reduce toxin levels.
Naturally contaminated (at various levels) barley was pearled for 15 s
to consistently leave 34% of the initial concentration of the toxin and
85% of the grain mass. Longer treatment resulted in significant grain
losses, but suitable scale-up remains a hurdle to commercial feasi-
bility (House and others 2003). Grain milling partitioned DON (and
zearlenone) to the various kernel fractions (bran > shorts > flour).
Zearlenone was reduced below 1 ppm in all of the 27 flour samples;
however, 3 of 27 flour samples contained DON levels greater than
1 ppm. FDA advisory information suggests that DON levels above
1 ppm are not acceptable for use in products for human consump-
tion. Reduction effectiveness depended upon the extent of pene-
tration of the fungi into the kernel (Trigo-Stockli and others 1996),
thereby limiting the practical implications of this method to control
DON levels in milled products. Other methods investigated without
success include alkaline processing (Abbas and others 1988) and
high temperature (autoclaving) and high pressure processing (extru-
sion) (Wolf-Hall and others 1999). Ultimately, continued vigilance
is necessary to screen potentially contaminated grains and prop-
erly dispose of lots with DON levels higher than allowed for specific
purposes.
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Fumonisins
Fumonisins are produced by the maize pathogens, Fusarium ver-

ticillioides (formerly F. moniliforme) and F. proliferatum, and at very
low levels by Alternaria in black end stem rot in tomatoes (Chen
and others 1992), asparagus, and garlic (Seefelder and others 2002).
Maize-containing foods are the major fumonisin concern for the
food industry. At least 15 related fumonisin compounds have been
identified; the fumonisin B (FB) group (Figure 1) is predominant.
The Fusarium species comprise a very complicated genus. Tradi-
tional phenotypic taxonomy based on morphology of the Fusarium
species can be done by well-trained specialists (Burgess and others
1994); because the morphology of many of the species is very simi-
lar and leads to misidentification, this approach has its limitations,
however.

The fumonisins are highly water-soluble and unlike all other food
mycotoxins because they do not have an aromatic structure or a
unique chromophore for easy analytical detection. They are pri-
mary amines (carbon group substitution at only 1 of the 3 bond-
ing positions) with 2 tricarballylic groups, which contribute to their
water-solubility. Study of metabolic pathways is in progress. Fumon-
isin synthesis is known to involve acetate precursors and alanine and
several of the genes involved in fumonisin synthesis have been iden-
tified as a cluster on chromosome 1 in F. verticillioides (Desjardins
and others 1996).

Fumonisin B1 (FB1) is the agent responsible for leukoencephalo-
malacia (related to necrotic lesions in the cerebrum) in horses
and pulmonary edema in swine. Hepatotoxicity (liver damage) and
nephrotoxicity (kidney damage) have also been reported in connec-
tion with fomonisin intoxication. Equine leukoencephalomalacia
was reported in horses in veterinary medical literature in 1902, but
the causative agents were not understood until 1990. Several major
outbreaks of these diseases were reported in 1989 and 1990 in the
United States when the concentration of fumonisins in midwest-
ern maize was quite high. The fumonisins are weakly carcinogenic
among different rodent species (Gelderblom and others 1993, Voss
and others 1995) and are probable human carcinogens, associated
with increased incidence of esophageal cancers in South Africa and
China (IARC 1993a,b). Marasas and others (2004) suggested that fu-
monisin consumption is a risk factor in neural tube and related birth
defects. Fumonisins are known to disrupt sphingolipid concentra-
tions and synthesis, which may explain the different etiologies of
fumonisin toxicity in livestock, experimental animals, and humans
(Merrill and others 1996). Altered plasma sphingosine/sphinganine
(blood serum compounds) ratios serve as biomarkers of fumonisin
exposure (Riley and others 1993).

Fumonisin content in the US corn was relatively high between
1988 and 1991, but has been low (<0.5 μg/g) in recent years
(Figure 3). There are a few reports of high fumonisin levels (up to
150 μg/g) in homegrown corn consumed in China and South Africa.
Most commercial foods, however, contain 500 ng/g or less due to low
fumonisin levels in corn and ingredient quality control (Shephard
and others 1996).

Grain sorting and sizing has not been shown to reduce fumonisin
levels in corn. Although corn screenings (small broken pieces of corn
kernels) are partly the result of fungal action on the kernels, removal
of the screenings did not significantly reduce fumonisin levels (Mur-
phy and others 1993). Because screenings can account for up to 25%
of the corn in commerce, this approach for reducing fumonisin levels
is not economically viable either. Wet milling of contaminated corn
(to produce starch) partitioned fumonisins to all fractions (gluten >

fiber>steep water>germ) except the starch fraction. Fraction yields
were not different between fumonisin-contaminated corn and the
control (Bennett and others 1996). Dry milling of contaminated corn
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Figure 3 --- Fumonisin concentrations in ppm (μg/g) in Iowa
corn elevator samples during 1988 to 1996

partitioned fumonisin to all fractions, with the bran (pericarp) con-
taining the highest levels (bran > germ > flour > flaking grits) for
white, yellow, and blue corn (Katta and others 1997). If levels are
reduced sufficiently, the corn may be subjected to decontamination
and/or used in lower-risk products (potentially animal feed).

Fermentation of fumonisin-contaminated corn to produce
ethanol resulted in reduced ethanol yields and did not significantly
degrade the toxin. However, distillation of the ethanol resulted in a
fumonisin-free alcohol with fumonisins remaining in the distillers’
solids (Bothast and others 1992). Ozonolysis of FB resulted in con-
version to 3-keto-FB; however, toxicity was not reduced (McKenzie
and others 1997). Ammoniation has also been investigated without
success; treatment of FB-containing culture material did not reduce
its toxicity to rats (Norred and others 1991).

The effects of a variety of heat/chemical processing operations on
fumonisin content have been investigated and the fumonisins have
proven extremely stable. Jackson and others (1996) investigated sta-
bility of 5 ppm in aqueous model systems at pH 4, 7, and 10. They
found that FB was most stable under neutral conditions and least
stable at pH 4; however, at temperatures above 175 ◦C FB content
was reduced by over 90% regardless of pH, suggesting that high tem-
perature processing may be effective against FB in some instances.
However, gaps remain in our understanding of thermal effects due
to reactions of other food ingredients with the putative toxic struc-
tural moiety of fumonisin, the primary amine group. The primary
amine group is key to detection in chromatographic and immuno-
logical analytical methods and can be derivatized with acids and/or
react with reducing sugars (Maillard reaction) during heat process-
ing, preventing these forms from being detected. The amine group
can readily participate in nonenzymatic browning with a variety of
reducing sugars and produces an array of typical Maillard products
and FB-glucose and FB-fructose adducts, which have been shown
to be noncarcinogenic in rat studies (Lu Z and others 1997, Liu and
others 2001, Lu Y and others 2002) and lacking acute toxicity in swine
studies (Fernandez-Surumay and others 2005). Fumonisin concen-
trations are lowered during extrusion processing and the remaining
low levels of Maillard reaction products are thought to be detoxi-
fied because naturally occurring N-acetyl-fumonisin was shown to
be nontoxic (Gelderblom and others 1993), and it is presumed that
the fumonisin-glucose adducts are likewise nontoxic (Murphy and
others 1996).

Further investigations of heat application to reduce FB levels in-
cluded baking and frying, both of which were shown to produce
some reduction in fumonisin levels. Corn-based batter was baked
(to make muffins) at 175 ◦C and 200 ◦C for 20 min, reducing FB levels
by approximately 15% to 30%, with increasing losses as temperature
increased. Losses were greatest at the surface of the muffins, which
was attributed to greater heat penetration as the baking temperature
was raised (Jackson and others 1997). Frying of masa (to make chips)
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at temperatures up to 170 ◦C for 6 min did not produce significant
FB losses; frying at 190 ◦C for 15 min was required to reduce FB levels
by 67% (Jackson and others 1997). A more recent study revealed up
to 80% reduction in production of fried corn chips; very little of this
reduction was the result of frying, however; reduction was due to
nixtamilization and rinsing (Voss and others 2001).

Alkaline processing has been shown to be effective in reducing
fumonisin levels and activity. The ester bonds of FB are hydrolyzed
to release its tricarballylic groups and yield aminopentol (Hendrich
and others 1993). Overall levels of both FB and hydrolyzed fumon-
isin (HFB) were reduced approximately 50% by the traditional nix-
tamilization process; however both FB and HFB remained in the
masa and cooked tortillas in a 1:1 mol/L ratio, suggesting that the
cooking, steeping, and rinsing process was effective in reducing
toxin content, but that baking to produce tortillas did not result in
further reduction (Palencia and others 2003). Other studies of this
process (pilot, commercial, and traditional scale processes) have
yielded some variation to these results, but most of all exhibited sig-
nificant reduction of toxicity. HFB is more bioavailable than fumon-
isin (Dantzer and others 1999), but less toxic to mice (Howard and
others 2002) and rats (Hendrich and others 1993, Voss and others
1998); masa production, therefore, is capable of significantly reduc-
ing toxicity of fumonisins.

Co-contamination
In addition to add to the complex nature of mycotoxin con-

tamination, there is also the possibility for multiple toxins to be
present in the same plant. Various combinations of the above com-
pounds have been identified, with work by Lopez-Garcia (1998) in-
dicating that their behavior in such cases is altered. Information on
co-contamination is limited, thereby elevating the challenge faced
throughout the farm-to-fork continuum.

Mycotoxin Control Strategies

The preceding sections contained discussions of potential chem-
ical and physical (processing) measures to control mycotoxin

contamination of foods and food products. The following sections
expand on this strategy to include good agricultural and manufac-
turing practices, HACCP, and biological and transgenic controls.

Good agricultural practices (GAPs)/good
manufacturing practices (GMPs)

The first line of defense against the introduction of mycotoxins
is at the farm level and starts with implementation of good agri-
cultural practices to prevent infection. Preventive strategies should
be implemented from pre- through postharvest. Preharvest strate-
gies include maintenance of proper planting/growing conditions
(for example, soil testing, field conditioning, crop rotation, irriga-
tion), antifungal chemical treatments (for example, proprionic and
acetic acids), and adequate insect and weed prevention. Harvesting
strategies include use of functional harvesting equipment, clean and
dry collection/transportation equipment, and appropriate harvest-
ing conditions (low moisture and full maturity). Postharvest mea-
sures include use of drying as dictated by moisture content of the
harvested grain, appropriate storage conditions, and use of trans-
port vehicles that are dry and free of visible fungal growth (CAC
2003, Quillien 2002). While implementation of these precautions go
a long way toward reducing mycotoxin contamination of foods, they
alone do not solve the problem and should be an integral part of an
integrated HACCP-based management system (Lopez-Garcia and
others 1999)

HACCP
Inclusion of mycotoxin control in HACCP plans, an important as-

pect of an overall management approach, should include strategies
for prevention, control, and quality from farm-to-fork. In the food
industry, postharvest control of mycotoxins has been addressed via
HACCP plans, which include use of approved supplier schemes. Im-
plementation at preharvest stages of the food system needs more
attention. Such action provides a critical front-line defense to pre-
vent introduction of contaminants into the food and feed supplies.
Preharvest HACCP programs have been documented for control-
ling aflatoxin in corn and coconuts in Southeast Asia, peanuts and
peanut products in Africa, nuts in West Africa, and patulin in ap-
ple juice and pistachio nuts in South America (FAO/IAEA 2001). Al-
dred and Magan (2004) outlined a number of HACCP schemes for
wheat-based commodities and Lopez-Garcia and others (1999) pro-
vided guidance for development of an integrated mycotoxin man-
agement program. Table 4 displays the effective use of an HACCP-
based postharvest hurdle approach to nearly eliminate aflatoxins
from peanuts.

Biological control measures
DON levels have been shown to be reduced in the field and in

storage without intervention, as discussed by Karlovsky (1999). Such
findings include:
- degradation mechanisms resulting in reduced mycotoxin levels

in the field. Limited research on DON has suggested the possibility
that the mycotoxin may be metabolized by corn enzymes; and

- decline in DON levels in grains stored at −18 ◦C to 4 ◦C and tri-
chothecenes at temperatures greater than 0 ◦C.
Karlovsky explained that such reductions in mycotoxin levels

have proven to be inconsistent and decreased levels of mycotoxin
in the field do not substantiate the occurrence of biological degra-
dation.

The potential for using microorganisms to detoxify mycotoxins
has shown promise. Exposure of DON to microbes contained in
the contents of the large intestines of chickens completely trans-
formed it in vitro to de-epoxy-DON (He and others 1992), which is
24 times less toxic than DON itself (Eriksen 2003). Similar findings
were demonstrated with the microflora of cow intestines (Binder
and others 1998).

Transgenic approaches
Current research efforts are focusing on methods to prevent in-

fection at the preharvest stage with emphasis on mechanisms by
which the affected plants may inhibit growth of molds or destroy
mycotoxins that they produce. Traditional grain-breeding strategies
to select for preferred genetic traits have been conducted for many
years. There has been limited success with this approach to Fusar-

Table 4 --- HACCP-based reduction of aflatoxins posthar-
vesta,b

Aflatoxin % Cumulative
Technology level (μg/kg) % Reduction reduction

Farmer’s stock 217 --- ---
Belt separator 140 35 35
Shelling plantc 100 29 54
Color sortingc 30 70 86
Gravity tablec 25 16 88
Blanching/color sorting 2.2 91 99.0
Re-color sortingc 1.6 27 99.3

aResults were obtained from processing of a 40000 kg lot of contaminated
peanuts.
bFrom Park and Liang 1993.
cData based on medium-category peanuts only.
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ium graminearum and Aspergillus flavus. There are hybrids cur-
rently in use that limit mycotoxin production; however, the poten-
tial to reach unacceptable levels remains. Fumonisin production has
received less attention from researchers; however, quantitative trait
loci (QTL) have been mapped. Unfortunately, QTL accounted for
less than half the variance in Fusarium phenotype and despite im-
proved resistance, unacceptable levels are still possible (Munkvold
2003). Traditional methods are plagued by many hurdles, however,
including inconsistent, labor-intensive inoculation techniques, lack
of single genes and resistant control genotypes, and the financial
implications of evaluating results (Munkvold 2003). Duvick (2001)
pointed out that visible symptoms of plant mold can be selected for
using traditional breeding techniques, but many of the mycotoxin-
producing fungi surface with no visible signs.

Genetic modification of mold-susceptible plants holds great
promise for controlling this food safety issue. Articles by Karlovsky
(1999), Duvick (2001), and Munkvold (2003) review a variety of ap-
proaches that are being or have been pursued. One such approach
involves increasing production of compounds (for example, anti-
fungal proteins or secondary metabolites, such as hydroxamic acids,
phenolics, stilbenes) that reduce infection by the microorganism.
This may be accomplished by introducing a novel gene to express
the target compound. Another option is to enhance expression of
such a compound by the existing gene, thereby capitalizing on the
plant’s own defense mechanisms. For example, enzymes that cat-
alyze production of antifungals could be targeted for expression.
Alternatively, genetic engineering methods to increase production
of enzymes that degrade mycotoxins are also being pursued (Du-
vick 2001, Munkvold 2003). Transgenic maize has been patented
for fumonisin-degrading corn for swine consumption (Duvick and
Rood 1998). Efforts are also under way to engineer plants to pro-
duce compounds that disrupt mycotoxin synthesis. For example,
enhanced expression of an α-amylase inhibitor in Aspergillus spp.
could result in significantly reduced aflatoxin levels (Duvick 2001,
Munkvold 2003).

Another avenue for reducing mycotoxin levels would be to reduce
insect injury to plant kernels. Insects play an important role in the
proliferation of mold growth in the field and in storage.

Resistance developed through the use of several Bt (Bacillus ther-
mophilus) genes in corn, wheat, and other cereal grains to mini-
mize insect damage has led to effective reduction in Fusarium ear
rot (F. verticillioides and F. proliferatum) mycotoxin levels in grain.
Munkvold (2003) cited 19 reports on Bt hybrids, with 12 of these
demonstrating reduced mycotoxin production compared to the par-
ent corn. It is important to note, however, that this approach is
not a long-term solution for fumonisin production because Fusar-
ium spp. can enter the kernels regardless of insect injury. Addition-
ally, reductions of aflatoxin production in the Bt hybrids were not
observed.

Bioterrorism

Because a number of mycotoxins, which may be lethal in rela-
tively low doses, may be cultured and grown on a wide variety

of grains, the possibility of deliberate mycotoxin contamination of
commodities and/or foods should be recognized by the food indus-
try when developing defense plans. The impact of an intentional act
of mycotoxin contamination could be severe, with potential pub-
lic health outcomes involving high mortality and devastating eco-
nomic consequences stemming from the corresponding impact on
the healthcare system, public fear, and avoidance of affected prod-
ucts. Prior to September 11, 2001, there was little concern pertaining
to defense against intentional contamination. Because of this, grain
storage and delivery systems, as well as food manufacturing plant se-

curity systems, deserve attention and crisis plans should be in place
to deal with possible biological and chemical terrorism incidents.
Where appropriate, these efforts should include mycotoxins.

Risk Assessment

Risk assessment of human health hazards associated with my-
cotoxins must rely on extrapolation from toxicity data obtained

in animal models and human exposure assessments. Exposure as-
sessments are quite sketchy at best, given that there is no publicly
accessible ongoing systematic surveillance for human mycotoxin
exposures. There are some interesting recent examples of attempts
to perform such extrapolations and comparisons. Advances in the
statistical estimation of uncertainty make extrapolations increas-
ingly relevant. For example, Eriksen and others (2000) based an ex-
trapolation of zearalenone risk on a no-observed effect level (NOEL)
of 40 μg/kg/d in pigs (during a 15-d study), for estrogenic effects.
Pigs were the most sensitive species, so although it is not clear to
what extent humans and pigs are equivalent in their response, this
estimate errs on the side of safety. The NOEL for zearalenone was
divided by a safety factor of 80 to derive an acceptable daily intake
(ADI) of 0.5 μg/kg for humans. No rationale was given for the choice
of safety factor, but, depending on the world region, this ADI is 8 to
31 times greater than estimated human exposures. Since this esti-
mate was done, the term ADI is being replaced by the term reference
dose (RfD). Kodell and Gaylor (1999) have provided evidence-based
extrapolation factors, combining data across hundreds of studies of
toxic effects of nongenotoxic agents and deriving best estimates of
major sources of variability in experiments (including interspecies,
inter-individual, and duration of toxic exposure). In the example of
zearalenone, based on the NOEL in pigs and a combined factor of
46 for inter-individual and interspecies variability (95% confidence
estimate), a revised estimate of human RfD would be 0.87 μg zear-
alenone/kg/d.

Kuiper-Goodman and others (1996) performed a risk assessment
for fumonisins based on human exposure data from Canada and the
extant toxicity literature on these mycotoxins. Because fumonisins
are almost exclusively found in corn, this is a somewhat simpler
case than for most other mycotoxins. Based on 361 corn food sam-
ples analyzed over 4 y, human fumonisin intake was estimated to
be <0.089 μg/kg bw/d. This dose was 1700-fold less than the low-
est NOEL obtained from animal studies (a 4.4-y study of 9 vervet
monkeys showing a NOEL of 0.15 mg/kg bw/d). The authors con-
cluded that human fumonisin intakes in Canada were very unlikely
to pose health risks. A more recent 2-y rodent carcinogenicity study
(NTP 2001) confirms this finding, with a NOEL of >0.2 mg/kg bw/d
with altered sphingosine/sphinganine ratios as a toxic endpoint.
The NOEL in this study for cancer (renal carcinogenesis in male
rats only) was 0.6 mg/kg bw/d. Kuiper-Goodman (2004) recently re-
viewed mycotoxin risk assessment and risk management and the
efforts of countries to harmonize regulations.

Due to the variation in mycotoxin content of human foods across
world regions and seasons, and the continually improving toxico-
logical data sets for mycotoxins, increasingly sophisticated models
will be developed to assess human health risk from these foodborne
toxins. Progress in the science of risk assessment is allowing a greater
level of certainty regarding risk, but toxin interactions and emerg-
ing human epidemics of various chronic and infectious diseases will
continue to pose major challenges in this field.

Food Safety Implications

Public awareness of issues surrounding mycotoxins is increasing.
Karlovsky (1999) provides 3 explanations for this phenomenon.

First, analytical chemistry is increasingly able to quantify the pres-
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ence of toxins in a growing number of food commodities. Second,
new and improved bioassays for toxicological studies on specific
targets have surpassed the abilities of less sophisticated methods
and allowed identification of negative health effects where previ-
ously none had been found. Third, the availability of routine testing
methods that are both efficient and affordable has allowed for in-
house monitoring, resulting in greater numbers of identified con-
taminations.

The variability in mycotoxin contamination and the potential for
novel mycotoxicoses to emerge make the prospects for ongoing
significant human mycotoxicoses likely, especially in low-income
countries in which surveillance is less available because of econom-
ical and technological constraints. The human health consequences
of acute aflatoxicosis alone range from death to exacerbated mal-
nutrition, devastating to the affected populations. In view of on-
going epidemics of immunosuppressive diseases, including HIV
infection and chronic protein calorie malnutrition, the additional
immunosuppression possible from mycotoxins deserves more at-
tention. Very little is known about the effects of long-term low-level
exposure, especially with regard to co-contamination with multiple
mycotoxins. Also, due to the heterogeneity of mycotoxin contami-
nation and the potential for sampling regions with elevated toxin
levels (“hot spots”), consistent sampling and analysis is difficult
(Lopez-Garcia and others 1999). Thus, development of low-tech,
inexpensive methods for mycotoxin surveillance is a world health
imperative. With several novel approaches being developed, such as
molecular imprint polymers (Weiss and others 2003) and immuno-
(De Saeger and others 2002) and bio-assays (Widestrand and others
2003), adoption of such methods is within reach. The prevention of
mycotoxin contamination of human foods could have a significant
effect on public health in low-income countries, and deserves sig-
nificant attention. The food industry should take the lead in these
efforts, because it will lead to improved economic sustainability of
the industry, enhanced food safety efforts, enhanced international
trade efforts, and improved public health.
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