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Abstract. In recent years the interest in antimicrobial
proteins and peptides and their mode of action has
been rapidly increasing due to their potential to
prevent and combat microbial infections in all areas of
life. A detailed knowledge about the function of such
proteins is the most important requirement to consid-
er them for future application. Our research in recent
years has been focused on the low molecular weight,
cysteine-rich and cationic antifungal protein PAF
from Penicillium chrysogenum, which inhibits the
growth of opportunistic zoo-pathogens including

Aspergillus fumigatus, numerous plant-pathogenic
fungi and the model organism Aspergillus nidulans.
So far, the experimental results indicate that PAF
elicits hyperpolarization of the plasma membrane and
the activation of ion channels, followed by an increase
in reactive oxygen species in the cell and the induction
of an apoptosis-like phenotype. Detailed knowledge
about the molecular mechanism of action of anti-
fungal proteins such as PAF contributes to the
development of new antimicrobial strategies that are
urgently needed.

Keywords. Antifungal protein, Penicillium chrysogenum, growth inhibition, endocytosis, heterotrimeric G-
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Introduction

Among the estimated 1.5 million fungal species
worldwide, only the diminutive number of ~ 300
species have been described to date to have patho-
genic potential or to be causative agents of allergies [1,
2]. However, the number of patients with a compro-
mised health status due to fungal contact has sharply
increased during the last decades. The main reasons
for this increase are: (i) the development of secondary

resistance of microorganisms to conventional drugs as
a result of long-term antimicrobial therapies, (ii) a
rising number of patients suffering from immunosup-
pressive infections or diseases, such as AIDS or
leukemia [3 – 8], and (iii) a considerable increase in
immunosuppressive therapies prolonging the life of
patients with a severely compromised state of health
at the cost of an elevated risk for life-threatening
fungal infections [9 – 11]. In contrast to antibiotics,
only a limited number of antimycotics are available to
date. New antifungal drugs are difficult to generate
because the host, e.g. vertebrates and plants, and the
invading fungal organisms share similar cellular and* Corresponding author.
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physiological characteristics. Thus, only few fungal
targets have been considered for antimycotic drug
therapies to date, for example the presence of a cell
wall (echinocandins), the lipid composition and the
ergosterol content of the fungal plasma membrane
(polyenes, azoles, allylamines, morpholines), and the
ability to metabolically activate drugs that interfere
with DNA and RNA synthesis (nucleoside analogues)
[2].
Apart from the severe health threat for humans and
animals, plant diseases caused by fungal infections are
a reason for crop damage and economic losses. New
and cheap strategies are needed to combat fungal
attack. For these reasons, novel antimycotics that
target unique structures or functions of fungi and that
lack severe side effects for the infected host are
urgently needed [2, 12, 13].
One approach to encounter these problems is to make
use of small, basic, cysteine-rich proteins with anti-
microbial activity, which are produced by the most
diverse organisms throughout all kingdoms. The
number of proteins with recognized antimicrobial
activity is rapidly increasing. The diversity of these
proteins is reflected in their mode of action (only few
examples given, transmembrane pore formation, in-
hibition of cell wall synthesis, interference with
nucleic acids and their synthesis, inhibition of protein
synthesis, interference with cell cycle control) and
their species specificity. These proteins are able to
inhibit the growth of bacteria, yeasts and filamentous
fungi, can hinder viral infections or even exhibit tumor
cell cytotoxicity. Due to their vast variety, at present
the classification of antimicrobial proteins is mainly
based on their secondary structure (for reviews refer
to [14– 21]). Whereas in prokaryotes and lower
eukaryotes these proteins might confer an ecological
advantage for the producing organism, in higher
eukaryotes they are part of the innate immune system
and represent the first defense against invading
microorganisms [22 – 25].
One promising antifungal protein is PAF (Penicillium
chrysogenum antifungal protein), which is produced
as a preproprotein by the imperfect filamentous
ascomycete P. chrysogenum. PAF is a cysteine- and
lysine-rich protein of 55 amino acids (aa) with a
molecular mass of 6.25 kDa. The abundantly secreted
protein can be easily purified from the supernatant by
ion exchange chromatography owing to its cationic
character [26] and exhibits cytotoxic activity towards a
variety of filamentous fungi in vitro, including impor-
tant zoo- and plant-pathogenic fungi [27, 28]. The fact
that various mammalian cells remain unaffected and
no production of proinflammatory cytokines is in-
duced [29] renders PAF a promising candidate for the
development of new antifungal therapies. In addition

to its biotechnological importance, PAF and similar
antimicrobial peptides can also be considered valua-
ble tools to study those aspects of fungal cell biology
that have been little investigated so far, such as protein
uptake mechanisms and apoptosis.
This review focuses on an antifungal protein originat-
ing from a filamentous ascomycete and points out
parallels to and differences from other antimicrobial
proteins and their mechanisms of action.

Structure-function analysis of PAF

So far only three other ascomycetes have been
reported to secrete antifungal proteins, which are
closely related to PAF: A. giganteus (AFP), A. niger
(NAF) and P. nalgiovense (NAF) [30 – 32]. The
availability of the whole genome sequence of an
increasing number of microorganisms facilitates the
search for more genes that encode potentially anti-
fungal proteins. By in silico analysis of all currently
available fungal genomic databases, a new paf orthol-
ogous gene could be identified in the genome of the
plant pathogenic ascomycete Gibberella zeae [33].
Although PAF shows no sequence homology with
antimicrobial proteins of organisms other than asco-
mycetes, it exhibits structural similarities: 13 lysine
residues result in a net positive charge (pI 8.9), and six
cysteine residues are involved in disulfide bond
formation. These primary structural motifs are likely
to contribute to a compact tertiary structure that
mediates high stability against environmental impact,
as our latest results propose (unpublished data).
PAF is synthesized as a precursor protein: a signal
sequence of 18 aa residues for protein secretion and a
prosequence of 19 aa are located N-terminally; the
latter is removed before or during the release of
mature PAF (55 aa) into the culture medium [26].
There are various examples of similarly processed
antimicrobial proteins, e.g. the antifungal protein AFP
[32] and the ribotoxin a-sarcin [34, 35] from Aspergil-
lus giganteus, killer toxins from Saccharomyces cer-
evisiae [36] and Ustilago maydis [37] and the chitin-
binding protein of Streptomyces tendae [38]. In gen-
eral, prosequences play an important role as ”intra-
molecular chaperones” by ensuring the interaction of
the unfolded protein with the transport machinery of
the cell and preventing protein activity before secre-
tion. Only after further protein processing, when the
prosequence is cleaved off, does the mature protein
adopt its correct tertiary structure and gain its final
activity [39].
Indeed, such a protective function of the prosequence
could be shown for PAFas well. The effects of secreted
PAF as well as of intracellularly retained pro-PAF and
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mature PAF were investigated by generating trans-
genic strains of the genetic model organism A.
nidulans that expressed various N-terminally truncat-
ed forms of the PAF protein [40]. It was demonstrated
that expression of prepro-PAF resulted in secretion of
the functional recombinant protein and dramatic
impairment of growth of the producing strain, accom-
panied by severe changes in hyphal morphology and
cellular ultrastructure. In fact, comparable changes
were observed upon external administration of puri-
fied, native PAF to wild-type (wt) A. nidulans [27, 41].
In contrast, the intracellular expression of recombi-
nant PAF containing the pro-sequence had no detri-
mental effects. The phenotype of the pro-PAF-pro-
ducing transgenic strain resembled the wt strain. Thus,
the inactivity of the protein and its cytoplasmic
localization emphasize the role of the prosequence
in preventing premature activity of PAF. Finally, the
intracellular expression of mature recombinant PAF
in the cytoplasm resulted in relatively mild effects on
the growth and morphology of the fungus. These
results suggest that either inproper folding accounts
for the reduced protein activity of the mature PAF
form or that PAF activity is dependent on its passage
through the outer layers (plasma membrane and/or
cell wall).

Protein activity and specificity

The use of PAF as a novel agent for the development
of a new antimicrobial therapy necessitates detailed
knowledge about its species specificity as well as its
mechanism of action in the target organisms. Using a
microdilution method described previously [42], sev-
eral filamentous ascomycetes, among them important
zoo-pathogenic and plant-pathogenic fungi including
A. fumigatus, A. niger and Botrytis cinerea, could be
detected as most sensitive organisms, whereas no
activity of PAF was observed against prokaryotes or
yeasts [27, 28, 33, 43] (Table 1). All sensitive fungal
strains tested reacted at any time point in a dose-
dependent manner [27]. With the most sensitive
species, growth retardation was observed at sublethal
concentrations, whereas increasing PAF concentra-
tions had fungicidal effects. The minimal inhibitory
concentrations (MICs) of PAF were found within
micromolar concentrations (Table 1), comparable to
those of general antimycotics that have been tested
under the same assay conditions; for example, for A.
fumigatus the MICs were 4 mM for amphotericin B
and caspofungin, 6 mM for itraconazole and 12 mM for
voriconazole.
Conidia are the most sensitive cellular structures: for
example, 8 mM PAF inhibits efficient germination of

A. niger conidia and prevents colony formation.
Removal of PAF does not cure this fungicidal effect.
In contrast, fungistatic properties can be observed
with hyphae: when 8 mM PAF are added to a 24-h
liquid culture of A. niger, hyphal growth is delayed but
does not cease in the presence of the antifungal
protein.
Growth retardation at sublethal concentrations is
associated with a severe change in morphology, which
becomes apparent as crippled hyphae with atypical
branching. This hyperbranched phenotype is accom-
panied by the burst of a few hyphae at their tips [27]
and closely resembles the effects of ”morphogenic”
antimicrobial proteins such as certain plant defensins
[21, 44, 45]. PAF toxicity is strongly influenced by the
ionic strength of the culture medium. The PAF-
induced effects can be partially neutralized in the
presence of magnesium ions (>20 mM) and potassi-
um ions (>80 mM). In contrast, sodium ions had no
significant effect at the concentrations tested (20 –
100 mM) [27]. In plants and other organisms, e.g.
bacteria and insects, the cation-dependent neutraliza-
tion of the positively charged antimicrobial proteins
was explained by the inhibition of their direct binding
to negatively charged phospholipid moieties present
in the plasma membrane of target organisms [42, 45 –
52], which may indeed be the case for numerous
proteins with general antimicrobial activity. However,
the exclusive specificity of PAF towards filamentous
fungi and not towards bacteria or yeasts strongly
supports the hypothesis of a distinct mode of action for
PAF, involving specific targets or increased target
accessibility in filamentous fungi, as proposed for the
action of certain plant defensins [21, 53, 54].

Localization of PAF

The identification of the localization of toxic proteins
in target cells could provide important information

Table 1. The antifungal activity of the P. chrysogenum protein
PAF.

Organism IC50 MIC

B. cinereaa 0.03 0.3

A. flavus 3 >16

A. fumigatus 1.6 16

A. nidulans 0.8 8

A. niger 0.16 3

Protein concentrations (mM) required for 50% growth inhibition
(IC50) and the minimal inhibitory concentration (MIC) were de-
termined after 30 –40 h incubation in complete medium by dose-
response curves as described [27].
a The values were determined after 72 h incubation.
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about their mode of action. Several studies have
addressed this question with fluorescence-labeled
proteins. Internalization has been shown for numer-
ous antimicrobial toxins, and intracellular targets that
interfere with DNA/RNA condensation, protein syn-
thesis or chaperone-assisted protein folding have been
identified [16]. For the antifungal defensin 1 of Pisum
sativum, colocalization of the fluorescence-labeled
protein with the nucleus was shown by fluorescence
microscopy, which parallels with its reported inter-
action with cyclin F and cell cycle inhibition in
Neurospora crassa [55]. The signal of the fluores-
cence-labeled antifungal protein AFP from A. gigan-
teus – a protein homologous to PAF – was found to
accumulate at the extracellular layers of sensitive
fungi but to be internalized by resistant fungi [56]. In
another report, the fluorescence signal colocalized
with nuclei [57], which seems to be supported by the
reported in vitro DNA/RNA-binding capacities of
AFP through an oligonucleotide/oligosaccharide-
binding (OB fold) structural motif [58]. This OB
fold structure could, however, also account for the in
vitro chitin-binding properties of AFP observed by
Hagen et al. [59] and may explain the observation of
the localization of AFP at the outer cellular layers of
sensitive microorganisms.
Indirect immunofluorescence staining (IIF) repre-
sents a reliable method of choice, provided that
specific antibodies are available. Using a specific
polyclonal antiserum, internalization of PAF was
shown in sensitive fungi (e.g. A. niger, A. fumigatus,
A. nidulans), whereas no specific interaction of the
protein was evident with resistant fungi (e.g. A. terreus,
Mucor sp.) [60]. This signal pattern contrasts in part to
that reported for the AFP protein. The distribution of
the PAF-specific fluorescence signal clearly shows
cytoplasmic localization, and no co-localization with
fluorescence-labeled nuclei could be verified (unpub-
lished data). Furthermore, no in vitro nucleotide-
binding activities with PAF were reported [33].
Instead, the internalization of PAF was dependent
on a functional protein structure, the active metabo-
lism of the test organism, the availability of ATP and
intact actin microfilaments. All these prerequisites
substantiate an endocytosis-like mechanism [60]. In-
deed, endocytosis has been suggested for the delivery
of various protein toxins to their target site [61], e.g.
the a-sarcin from A. giganteus [62], the plant toxin
ricin [63], the human neutrophil protein defensin [64]
and various bacterial toxins [65 –67].

Mode of action

Many antimicrobial proteins exert their function by
their pore-forming activity and permeabilization of
the plasma membrane [42, 49– 51, 68 –70]. Detailed
studies with PAF excluded this hypothesis and allowed
important insights into a clearly different mode of
action.

Heterotrimeric G-protein signaling. It was shown in S.
cerevisiae and A. nidulans that antifungal proteins
interfere with G-protein signaling, although the data
are controversial [47, 71, 72]. The role that G-protein
signaling plays in mediating the toxicity of antifungal
proteins seems to strongly depend on the antifungal
proteins tested.
Using a transgenic A. nidulans strain that carries a
mutation in the fadA (fadAG203R) gene, the G-protein-
coupled activity of PAF was confirmed [73]. The fadA
gene encodes the heterotrimeric G-protein a-subunit
FadA. The exchange of a glycine residue by an
arginine at position 203 (fadAG203R) results in inhib-
ition of the dissociation of the Ga subunit from Gbg

[74]. Proliferation assays revealed reduced sensitivity
of the A. nidulans fadAG203R mutant strain to PAF [73],
indicating that PAF toxicity requires active hetero-
trimeric G-protein signaling. This finding resembles
that of Coca et al. [71], who proved resistance of a
fadAG203R A. nidulans mutant strain towards the
antifungal protein osmotin from plants. In analogy to
other toxins, it is possible that PAF interacts with one
of the G-protein subunits directly [75, 76] or that PAF
interferes indirectly with G-protein signal transduc-
tion. Alternatively, mutations in components of the G-
protein signaling pathway, as in fadAG203R, might affect
the target accessibility for PAF and hence account for
the observed PAF-resistance.

Plasma membrane polarization. One major effect of
many antimicrobial proteins is the destabilization of
the plasma membrane by pore formation, which leads
to ion leakage [14]. A significant elevation in the
potassium concentration in the supernatant of PAF-
treated A. nidulans hyphae was detected, which could
not be explained by the leakage of burst hyphal tips
under the applied experimental conditions [27].
Measurements of the membrane potential revealed
hyperpolarization of the fungal membranes at the
hyphal tips immediately after PAF exposure [41]. In
our opinion, the hyperpolarization event excludes an
unspecific ion leakage of the membrane, which
would lead to depolarization of the plasma mem-
brane; instead, it supports the assumption of the
induction of selective potassium permeability. The
perturbation of the intracellular ion homeostasis
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might account for the observed changes in the
morphology of PAF-treated sensitive fungi. This
mechanism resembles that of certain plant defensins
[47] but diverges from the reported mode of action of
antimicrobial proteins from bacteria, insects and
humans, which form pores with little species specif-
icity in the membranes of target organisms and lead
to cell leakage [51, 69, 70].

Induction of intracellular ROS. Macromolecules, such
as lipids, proteins and nucleic acids, as well as
organelles, especially mitochondria, are challenged
by reactive oxygen species (ROS) in organisms with
aerobic metabolism. Adaptive responses prevent
major damage in healthy cells; however, the accumu-
lation of ROS in response to specific stimuli can have a
severe impact on cells, resulting in the oxidation of
biopolymers and, consequently, in the destruction of
cellular membranes and organelles. In this respect,
mitochondria are not only the main ROS source but
are also especially prone to oxidative damage, and
their ROS-induced disintegration is known as ”mi-
toptosis” [77 –80]. Importantly, the generation of
elevated levels of ROS represents a major elicitor of
programmed cell death (PCD) in both lower and
higher eukaryotes [81 – 87].
Indeed, the exposure of sensitive Aspergillus strains
such as A. niger, A. fumigatus, A. nidulans and
transgenic A. nidulans mutants (expressing recombi-
nant PAF) to PAF induced the generation of ROS [27,
40, 73]. In contrast, no such effects could be detected
in insensitive fungi (e.g. A. terreus, Mucor sp.).
Oxidative damage of cell organelles in PAF-treated
hyphae was illustrated by aberrant ultrastructural
morphology of the mitochondria in PAF-treated A.
nidulans cells and in the transgenic PAF-expressing A.
nidulans strains [40, 73]. Transmission electron micro-
scopy revealed that mitochondria of PAF-affected
cells were less well defined and often displayed
discontinuous or missing outer membranes compared
to the organelles in the cytoplasm of control hyphae.

Induction of an apoptosis-like phenotype. When the
ROS burden of the cell reaches a critical level, basic
physiological functions are impaired and PCD might
occur. The onset of PCD leads to a distinct phenotype
showing phosphatidylserine (PS) externalization,
membrane blebbing, increased vacuolization, DNA
and nuclear fragmentation, and apoptotic body for-
mation. Although apoptosis was thought to be con-
fined to multicellular higher eukaryotes in the past,
there is an increasing body of evidence that prokar-
yotes and lower eukaryotes such as yeasts and
filamentous fungi also show characteristics of apop-
tosis-like cell death [84, 85, 88– 93].

The potential of PAF to induce apoptosis in sensitive
fungi was tested with A. nidulans protoplasts, either
left untreated or exposed to PAF, using an array of
cytological assays. The increased exposure of PS on
the surface of PAF-treated protoplasts and the
appearance of DNA strand breaks were shown by
Annexin V staining and terminal deoxynucleotidyl-
transferase-mediated dUTP-biotin nick end labeling
(TUNEL), respectively. Ultrastructural analysis by
transmission electron microscopy revealed the loss of
cell wall granularity and architecture, shrinkage of the
cytoplasm, detachment of the plasma membrane from
the cell wall and the formation of microvesicle-like
structures between the cell wall and the cell mem-
brane, whereby the latter two events resembled
membrane blebbing of apoptotic cells [94– 97]. Fur-
thermore, the nuclear membrane disappeared and
large vacuoles became apparent. With progressing cell
injury, no distinct cytoplasmic organelles were detect-
able, and the whole cell had disintegrated. Thus PAF
seems to induce a strictly regulated cell death. This
observation further underlines that a specific inter-
action of the protein with the target organism is highly
probable.

Hypothesis of the mechanism of action of the anti-
fungal protein PAF. Since no direct interacting
molecule has been identified so far, we can only
speculate on the first interaction event of PAF with
sensitive target fungi (Fig. 1). The cell wall represents
the first characteristic structure that could act as a
selective barrier, mediating the access of antifungal
proteins to sensitive fungi depending on its composi-
tion. In vitro chitin-binding properties for the PAF-
homologous AFP protein from A. giganteus have been
reported [59, 98], although this has not been shown in
vivo so far.
Several studies propose the interaction of antifungal
proteins with components of the plasma membrane
[46, 53, 99, 100]. Indeed, many antimicrobial proteins
contain cationic and/or hydrophobic motifs that could
promote interaction with the plasma membrane and
its permeabilization. For example, structural analysis
of the A. giganteus AFP allows the assumption that the
presence of such sites promotes the binding and
insertion of the antifungal protein into the plasma
membrane of sensitive fungi [101]. The plasma
membrane composition differs significantly between
bacteria, plants, fungi and mammals. Excellent re-
views on this topic have been written [102, 103].
Whereas bacterial membranes contain more phos-
pholipids, phosphoglycerolipids, glycoglycerolipids,
sphingolipids and sterols are major components of
cellular membranes in eukaryotes. As for plant and
insect defensins, yeast sphingolipids, such as manno-
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syldiinositolphosphorylceramide, were found to inter-
act with the defensin DmAMP1 from dahlia [100].
The yeast sphingolipid glucosylceramide (GlcCer)
interacts with both the defensin RsAFP2 from radish
and the insect defensin heliomycin, although distinct
motifs of GlcCer seem to be involved in the latter
interaction [46]. Furthermore, analysis of N. crassa
mutants with increased resistance towards plant
defensins revealed differences in the GlcCer structure
and significantly elevated levels of steryl glycosides
[104]. This indicates that interaction of antimicrobial
proteins with the plasma membrane of target organ-
isms is not only determined by the presence of a single
kind of plasma membrane component; lipid compo-
sition, molar distribution and structure of the compo-
nents determine the species-specific interaction with
target fungi. Interestingly, the binding of antimicrobial
proteins to the cell membrane need not inevitably
result in its disruption by pore formation as generally
proposed. Thevissen et al. [102] presented a model in
which plant defensins bind to sphingolipid rafts in the
plasma membrane and subsequently change the
membrane permeability for specific ions. Alternative-
ly, interference with signal transduction by lipid rafts
could occur. Fantini et al. [105] reported the existence
of glycosphingolipid-enriched microdomains on
mammalian cells that are closely associated with G-
regulatory proteins and function as docking sites for
microbial toxins from where they activate G-protein

signaling. It is conceivable that such domains also exist
on fungal cells. So far no interaction of PAF with any
of these components of the cell layers – cell wall or
plasma membrane – could be verified.
Nevertheless, PAF elicits an immediate response at
the plasma membrane, evoking hyperpolarization of
the membrane near the hyphal tips and an increase in
potassium ion permeability. Both events could result
from PAF-mediated heterotrimeric G-protein signal-
ing, which is known to regulate, among many other
effects, the levels of second messengers, such as cAMP,
or ion channels [106]. Thus, activation of heterotri-
meric G-protein signaling could be one of the early
events that is induced by PAF and that could account
for further effects, such as ROS formation and the
induction of PCD [107 –110]. Increased ROS forma-
tion could impair mitochondrial integrity, as shown by
transmission electron microscopy [41], aggravate the
ROS burden of the cell and thus contribute to the
induction of the apoptosis-like phenotype observed
with PAF sensitivity [41]. Induction of PCD has been
shown to occur in yeast exposed to antifungal proteins
that are structurally unrelated to PAF, e.g. the plant
osmotin [16, 111], the yeast killer toxins [112] and
recently the amphibian dermaseptin [113]; the report
by Leiter et al. has demonstrated for the first time an
apoptosis-like phenotype in a filamentous ascomycete
as a result of the action of a cationic, cysteine-rich
antifungal protein, PAF [41].

Figure 1. Schematic diagram for the hypothetical mechanism of action of the antifungal protein PAF (Penicillium chrysogenum antifungal
protein). Species specificity of the PAF protein may be determined by specific molecules expressed on the outer layer of the organism (e.g.
cell wall and/or plasma membrane). The interaction of PAF with the target organism immediately elicits hyperpolarization of the
membrane and increased ion permeability. This effect could involve heterotrimeric G-protein signaling (dotted arrow), which induces the
elevation of reactive oxygen species (ROS). This increase in ROS leads to the oxidation of biomolecules and the disintegration of cellular
structures (e.g. mitochondria – mitoptosis), which in turn might further aggravate the ROS burden of the cell and induce a programmed cell
death phenotype in sensitive fungi. The cytotoxicity of PAF is accompanied by its active internalization into the target cell.
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Active internalization seems to be closely related to
PAF cytotoxicity. However, the question of whether
the uptake of PAF is receptor-mediated must still be
intensively studied. In case that internalization is a
prerequisite for its cytotoxicity, the existence of
intracellular interaction molecules has to be assumed.
The elucidation of the mechanisms of action of
antimicrobial proteins in more detail deserves further
intensive studies, e.g. by identifying and characterizing
resistant or hypersensitive fungal mutants as docu-
mented for several plant defensins [114– 116]. Com-
pared to the vast number of well-characterized S.
cerevisiae mutants, the number of mutants available
from filamentous fungi (A. nidulans, A. niger, A.
fumigatus, etc.) is rather restricted, which is one factor
that has hampered the progress in elucidating the cell
biology of these organisms. Importantly, antifungal
proteins in general represent a valuable tool to
increase our knowledge in certain aspects of the cell
biology of filamentous fungi including endocytosis,
heterotrimeric G-protein signal transduction, ROS
production and PCD.

Important aspects for potential future applications

High stability in vivo, low production costs and
negligible side effects are the most important criteria
for considering antimicrobial proteins for future
pharmaceutical applications. The fact that PAF
evokes perturbation of the plasma membrane might
pose a severe problem for its potential application in
mammalian cells. Therefore, the effects of PAF on
various primary excitable and non-excitable mamma-
lian cells were investigated in vitro [29]. PAF shows no
cytotoxic effects on human endothelial cells and fails
to activate voltage-gated potassium channels of neu-
rons, skeletal muscle fibers and astrocytes from rat.
Furthermore, neither the hyperpolarization-activated
non-specific cationic current nor L-type calcium
current in cells of semi-thin slices of the rat cochlear
nucleus is affected by PAF, as shown by electro-
physiological experiments. The latter observation
clearly contrasts the effects of other small antimicro-
bial proteins such as the KP4 killer toxin from U.
maydis and the seed defensin MsDef1 from Medicago
sativa that block L-type calcium channels in mamma-
lian cells [117, 118]. Finally, PAF has no erythrocyte-
lysing activity and does not stimulate human periph-
eral activated monocytes to increase the production of
the pro-inflammatory cytokines IL-6, IL-8 and TNF-a
[29], whereby the lack of any detrimental effect on
cultured mammalian cells is not attributed to serum
inactivation. The homologous antifungal protein AFP
from A. giganteus showed a comparable lack of

activity against primary mammalian cells in vitro,
which supports the promises of members of this new
group of antifungals as potential future therapeutics
[119].
Similar to the resistance of primary mammalian cells
towards PAF, no cytotoxicity of PAF on the human
teratocarcinoma cell line NT2 could be detected
(unpublished data), which stands in contrast to reports
of the antitumor activity of certain human defensins
[18]. However, this topic deserves further detailed
investigations.
In a most recent study, it was demonstrated that PAF
acts synergistically with the statins lovastatin, rosu-
vastatin and atorvastatin, which are competitive
inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme
A reductase and exhibit potent antifungal activity
[43]. This fact renders the investigation of the
interactions between antimicrobial proteins and
other types of antifungal compounds very promising
and supports the assumption that these proteins can
be regarded as potential candidates in future anti-
fungal drug research and combinatorial therapies.
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