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Defensins and cathelicidins are prevalent and essential
gastrointestinal cationic antimicrobial peptides (CAPs).
However, these defensive peptides are not infallible
because certain enteropathogens can overcome their
protective function. Furthermore, impaired defensin
synthesis has been linked to the occurrence of Crohn’s
disease (CD), a chronic inflammatory bowel disease.
Recently, defective bacterial sensing through NOD1
and NOD2 has been related to reduced defensin produc-
tion, CD predisposition and susceptibility to enteric
infection. Hence, we propose that microbial sensors at
the gut interface monitor the levels of these effector
peptides, which might function as ’danger’ signals to
confer tolerance and alert immunocytes. Further work is
required to clarify how gastrointestinal CAPs are regu-
lated and to assess their role in maintaining epithelial
homeostasis and triggering adaptive immunity.

Linking inflammatory bowel disease to a vulnerable
armoury of cytosolic innate sensors
The digestive mucosa has evolved various immune strate-
gies to tolerate intimate contact with commensals and to
prevent pathogenic bacteria from spreading into host tis-
sues. The recognition of foodborne indigenous and patho-
genic microbes is an essential barrier function for the
survival of insects and mammals. In particular, mamma-
lian resistance to pathogens is mainly conferred by mem-
brane-bound Toll-like receptors (TLRs) [1] and the recently
identified family of cytosolic nucleotide-binding oligomer-
ization domain proteins that contain leucine-rich repeats
(NOD-LRRs) [2]. NOD1 and NOD2 have an N-terminal
caspase recruitment domain (CARD), a central nucleotide-
binding domain (NOD) and a C-terminal leucine-rich
repeat domain (LRR) [2].

Considerable attention has been focused on NOD2 sig-
nalling because mutations of this gene have been asso-
ciated with Crohn’s disease (CD), a nonspecific chronic
inflammatory disease that can affect the whole human
gastrointestinal tract [3,4]. NOD2 functions as a cytosolic
pattern-recognition molecule (PRM) for bacterial peptido-
glycan [5] by detecting a major muropeptide that is
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released and recycled during bacterial growth – the
muramyl dipeptide MurNAc-L-Ala-D-isoGln (MDP) [6–8].
Following recognition of MDP, NOD2 promotes and reg-
ulates both innate and adaptive immunity through the
activation of transcription factors and kinases [2]. Hence,
the absence of Nod2 signalling inmice confers oral suscept-
ibility to Listeria monocytogenes through the regulation of
certain enteric cationic antimicrobial peptides (CAPs) [8].
Recent work has provided evidence that NOD1 confers
responsiveness to peptidoglycans that contain meso-
diaminopimelic acid (which is primarily found in Gram-
negative bacteria) [9,10]. Similar to the physiological role
of NOD2, NOD1 is required for expression of certain
b-defensins by gastric epithelial cells during Helicobacter
pylori infection [11].

In this Opinion article, we review recent findings on the
physiological roles of NOD1 and NOD2 as sensors and on
gut-derived CAPs (defensins and cathelicidins) as effectors
of the gastrointestinal antimicrobial defence system
(Figure 1 and Figure 2). We hypothesize that impaired
microbial sensing and aggression by specific enteric
microbes might tackle the function of CAPs in the gut
and result in the development of chronic inflammatory
disorders such as inflammatory bowel disease (IBD). These
findings shed new light on the pathogenesis of CD, which is
classically viewed as resulting from an abnormal T-cell
activation by microbial immunogens.

Gastrointestinal antimicrobial peptides: implications for
inflammatory disease
Recent reports have shed light on the effector role of
CAPs in monitoring gut homeostasis and in the contain-
ment of invading microbes because the stem cells that
replenish the gut epithelium require continuous antimi-
crobial protection. The level of CAP expression parallels
intestinal development in metazoans, from the immatur-
ity of local defence mechanisms during gestation to bac-
terial colonization of the gut after birth [12]. In this
section, we focus on the NF-kB-dependent and NF-
kB-independent regulation of two types of CAP that
are prevalent in the mammalian gut, namely the defen-
sins and cathelicidins. Furthermore, we review the
pathological role of these peptides in the development
of intestinal inflammation.
ed. doi:10.1016/j.tim.2006.08.008
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Figure 1. Structure of human defensins and cathelicidin. (a) Human sequences of the enteric a-defensin HD-5, the b-defensin hBD-2 and the cathelicidin hCAP-18. Red

arrows depict the cleavage site for HD-5 and cathelicidin. Patterns of the three intramolecular disulfide bonds of the a- and b-defensins are indicated by black lines (S-S).

(b) 3D solution (hBD-2 and cathelicidin) and crystal structure (HD-5) of defensins and cathelicidin. Blue sticks within the 3D structures indicate the three intramolecular

disulfide bonds. The Protein Data Bank accession numbers used for the illustration are: HD-5, 1ZMP; hBD-2, 1E4Q; and LL-37 (C-terminal fragment of hCAP-18), 2FCG.

b turns are in orange and a-helices are in red; molecule hydrophobicity is also displayed.
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Defensins and cathelicidins

The a- and b-defensins are small polypeptides with
spatially separated hydrophobic and positively charged
residues. Six invariant cysteines form three specific intra-
molecular disulfide bonds and, thus, stabilize the protein in
an intricately folded, triple-stranded b-sheet configuration
[12,13] (Figure 1). Whereas the a-defensins HD-1 to HD-4
(also known as human neutrophil proteins 1–4) are
expressed by neutrophils, HD-5 and HD-6 (also known
as cryptdins inmice) are produced by specialized intestinal
epithelial cells called Paneth cells. These cells are located
primarily at the base of the crypts of Lieberkühn in
the small intestine and have a major role in the
innate immunity of the ileal mucosa by synthesizing and
releasing proteinaceous granules into the lumen following
exposure to microbes and/or microbial products. These
secretory granules are rich in amphipathic peptides,
which can cause microbial death by disrupting membrane
integrity [12].

The in vivo antimicrobial function of a-defensins has
been experimentally exemplified by observation of greater
resistance to Salmonella typhimurium infection in HD-5
transgenic mice, accompanied by marked changes in the
composition of the dominant flora in the gastrointestinal
lumen [14]. Unlike b-defensins, the a-defensins produced
by Paneth cells are mainly regulated at a post-
www.sciencedirect.com
transcriptional level by extracellular proteases [15],
including matrix metalloproteinase-7 (MMP-7, matrilysin)
in mice and trypsin in humans [16,17]. Hence, Mmp-7�/�

mice accumulate inactive forms of cryptdins and succumb
more readily to oral infection with S. typhimurium than
wild-type animals [17]. Six human b-defensins (hBD-1 to
hBD-6) are primarily synthesized by most epithelial cells.
Mice lacking the hBD1 orthologue show increased suscept-
ibility to Staphylococcus aureus infection [18], which sup-
ports a role for this protein in innate immunity.

Cathelicidins are CAPs that are structurally and evolu-
tionary distinct from defensins but have a similar abun-
dance and distribution in the gastrointestinal tract [12].
They are synthesized as large precursor peptides contain-
ing a highly conserved N-terminal domain (cathelin),
linked to a C-terminal peptide with antimicrobial activity
(Figure 1). As with defensins, cathelicidins are activated by
extracellular partial proteolysis [19]. Although several
members of the family have been identified in other mam-
malian species, humans and mice have a single cathelici-
din gene [referred to as LL-37/FALL39/hCAP18 and
cathelin-related anti-microbial peptide (CRAMP), respec-
tively [20]]. Experimental evidence has indicated that mice
lacking CRAMP are more susceptible to cutaneous infec-
tion by group A streptococci and urinary tract infection
by invasive Escherichia coli [21,22]. Furthermore,



Figure 2. A pathophysiological model for chronic intestinal inflammation. Once indigenous (pale blue) or enteroinvasive (orange) microbes and/or their products

[pathogen-associated molecular patterns (PAMPs; green ovals)] are sensed by TLRs (dark blue) and/or NODs (pink; left), CAPs are synthesized by the action of NF-kB and/or

other transcription factors. Following their secretion and extracellular processing, the CAPs (i) promote tolerance and the recruitment of inflammatory cells; (ii) prevent

invasion of microbial pathogens; and (iii) protect against the development of chronic intestinal inflammation. Abnormal antimicrobial peptide synthesis and/or function

might lead to aberrant activation of the adaptive immune system and to intestinal inflammation (right) by microbial threats and/or impaired innate immunity (i.e. NOD2

mutations).
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CRAMP-deficientmacrophages failed to control replication
of S. typhimurium [23].

NF-kB-dependent and -independent regulation of

gut-derived antimicrobial peptides

Mice that bear mutations in the NF-kB and MyD88
signalling pathways display increased susceptibility to
Helicobacter-induced colitis [24] and commensal-triggered
colitis, respectively [25],which indicatesanessential role for
NF-kB in gut tolerance and/or resistance to bacteria
(Figure 2) and a potential involvement in the regulation
of CAP production. In humans, hBD-1 expression is consti-
tutive in the small intestine and the colon, whereas colonic
synthesis of hBD-2–4 is strongly dependent on NF-kB acti-
vation by infectious agents in the digestive tract (such asH.
pylori) and/or pro-inflammatory cytokines [12]. In addition
to the regulatory impact of TLR signalling [26], the NOD1
and NOD2 signalling pathways have been shown to trigger
hBD-2 expression [11,27]. Furthermore, recent findings
have shown that activation of the MAP kinase pathways
is also required for hBD-2 and/or -3 expression [11,26].
www.sciencedirect.com
In parallel, NF-kB-independent signalling pathways
might control CAP production by regulating epithelial cell
renewal, differentiation and/or lineage commitment. Inter-
estingly, impaired Wingless (Wnt) signalling is associated
with a complete lack of proliferative cells in the foetal small
intestinal epithelium [28], which suggests that this path-
way has an essential role in maintaining the status of
intestinal epithelial cells as either proliferative or undif-
ferentiated. The absence of the gene encoding ephrin B3
(which is downregulated by the Wnt signalling pathway)
resulted in abnormal Paneth cell lineage commitment [29].
Moreover, the Wnt signalling pathway might monitor
defensin gene expression [through transcription factor
(TCF)-4] in cells derived from Paneth cells because crypt-
dins were not detected in the small intestine of embryonic
Tcf4�/� or adult mice carrying a conditional deletion of the
Wnt receptor Frizzled-5 [30]. Conversely, cryptdin genes
are overexpressed in mice that showmutational activation
of the Wnt signalling pathway [30,31]. Lastly, a site-
directed mutational analysis of a-defensin promoters
revealed an essential regulatory role for TCF binding sites



Box 1. Questions for future research

� Does the commensal flora have a regulatory role in CAP

expression?

� What is the spectrum of action of CAPs on indigenous and

pathogenic bacteria?

� How is the diversity of the commensal flora regulated by CAPs?

� Which TLRs and NODs are implicated in defensin regulation?

� How do CAPs alert the host immune system to the presence of

intruders?

� Is there any synergy and/or redundancy between TLRs and NODs

in terms of CAP biogenesis?
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[30]. Taken as a whole, these findings indicate that activa-
tion of Wnt signalling is required for the production of
Paneth-cell-derived CAPs. Hence, Paneth cell determi-
nants (such as Mtgr1 and Gfi1) should be considered as
potential candidates for susceptibility to chronic inflam-
matory disorders [32,33].

Given the crucial role of certain nuclear receptors in
immunity, bacterial-induced inflammation and cell prolif-
eration and maturation, it was suggested (by us and
others) that these receptors could have a potential role
in gastrointestinal innate immunity by regulating CAP
biogenesis. Interestingly, a glucocorticoid receptor agonist
(dexamethasone) enhances hBD-2 expression, although
the mechanism remains to be determined [34]. More
recently, cathelicidin- and hBD2-encoding genes were
identified as targets of the vitamin D receptor (VDR)
[35], a nuclear receptor that is required for resistance to
Mycobacterium bovis infection [36]. Treatment of mono-
cytes with a synthetic VDR ligand led to dose-dependent
upregulation of cathelicidin gene transcription, which
exerts a direct antimicrobial effect on Mycobacterium
tuberculosis [37]. In agreement with these findings, indi-
viduals with decreased endogenous VDR ligand levels dis-
play increased susceptibility to M. tuberculosis infection
[37]. Furthermore, Shah et al. [38] unravelled crosstalk
between the Wnt/b-catenin and VDR signalling pathways;
further investigation of such phenomena might shed light
on the understanding of antimicrobial host defence and
could lead to the development of promising therapeutic
strategies for chronic inflammatory diseases.

Hide and seek: when enteric microbes and defensins
enter into combat
To circumvent the microbicidal activity of CAPs, micro-
organisms (generally pathogens) have developed a range of
strategies that are reminiscent of those involved in anti-
biotic resistance [39]. One way to achieve inactivation is to
produce proteases, which degrade CAPs; however, in the
case of defensins, the intramolecular disulphide bridges
render the peptides relatively resistant to enzymatic pro-
teolysis. Another stratagem reduces the net cationic
charge of the bacterial envelope to lower its affinity for
CAPs: this is achieved by incorporating positively charged
groups into the teichoic acid polymers (D-alanine) and into
the lipid A (aminoarabinose) in the bacterial cell wall.
Other bacterial approaches to CAP resistance include
preventing the host effectors from accessing their target
through extracellular capture by secretory proteins and
actively pumping the peptides across the cytoplasmic
membrane [39]. However, despite these various protective
weapons (which are not mutually exclusive), microorgan-
isms can probably still be inhibited by CAPs if the host is
capable of releasing high amounts of CAPs into the intest-
inal lumen, as in the case of a-defensins. In such a situa-
tion, downregulation of CAP-encoding genes at the
transcriptional level by bacterial components (as reported
in patients with shigellosis [40] and in mice orally infected
with S. typhimurium [41]) might be a highly sophisticated
counter-mechanism (Figure 2). Additional investigation is
now needed to specify the molecular mechanisms by which
microbial threats might modulate innate immunity in
www.sciencedirect.com
general and the NOD signalling pathways in particular,
and the mechanisms by which enteric microbes might
trigger chronic inflammation of the CAP-defective gut.

Host failure to monitor defensins associated with
Crohn’s disease
Three mutations in the NOD2 gene (namely Arg702Trp,
Gly908Arg and the frameshift mutation 1007fs) lead to a
predisposition to CD [3,4]. Genotype–phenotype correla-
tions have established that NOD2 mutants are predomi-
nantly linked to ileal CD [42]. Both common and rare
mutations have been associated with impaired MDP-
induced NF-kB activation [5,7] and cytokine production
in peripheral blood monocytes [7,43–45]. Lala and colla-
borators recently reported that NOD2 is highly expressed
in Paneth cells [46,47], a finding that might account for the
association between NOD2 mutations and the develop-
ment of ileal inflammatory lesions [42]. In agreement with
a protective effect of NOD2 in the ileum, Nod2-knockout
mice displayed an enhanced susceptibility to oral infection
(but not systemic infection) with the Gram-positive facul-
tative intracellular bacterium L. monocytogenes, and a
markedly decreased expression of a subgroup of cryptdin
genes [8] (Figure 2).

Importantly, decreased production of HD-5 and HD-6
has been found in surgical resection specimens and biop-
sies from ileal CD patients [14,48,49]; reportedly, the
CD-associated NOD2 mutations contributed to this
impairment. By contrast, individuals with Crohn’s colitis
displayed normal a-defensin levels but have a much-
reduced copy number for the b-defensin gene hBD-2,
resulting in impaired expression in the colon [50]. As
with NOD2 mutations, complex intronic polymorphism
of theNOD1 gene has been associated with the pathogen-
esis of IBD [51]. In addition, Nod1-deficient mice display
increased susceptibility to H. pylori infection [52] and
decreased expression of certain b-defensins [11]. Taken as
a whole, these observations suggest an overall pathophy-
siological concept for CD (Figure 2). Complementary stu-
dies are now required to specify the molecular link
between NOD1/2 and a/b-defensin expression and to
determine the spectrum of oral susceptibility to other
microbes in Nod-deficient mice. Finally, the role of other
NOD-dependent signalling pathways in CAP expression
remains to be determined. It also remains to be seen
whether CAP-deficient mice experience spontaneous
and/or increased susceptibility to experimentally induced
colitis (Box 1).



Table 1. Versatile functions of the defensins and cathelicidinsa

Functions Enteric a-defensins b-defensins Cathelicidin Refs

Innate immunity

Antimicrobial Yes Yes Yes [12,13,21,39,53]

Endotoxin binding ND ND Yes [39,53]

Phagocyte chemotaxis ND Yes Yes [12,13,53]

Cytokine production Yes Yes Yes [54–56]

Chemokine production Yes ND Yes [53,54]

Mast cell degranulation ND Yes Yes [13,53]

Adaptive immunity

Dendritic cell activation and/or maturation ND Yes Yes [54–56]

Dendritic cell chemotaxis ND Yes ND [12,13,53]

T-lymphocyte activation ND Yes Yes [56]

T-lymphocyte chemotaxis ND Yes Yes [12,13,53]

Immunoglobulin production ND Yes Yes [53]

Others

Angiogenic ND Yes Yes [13,57]

Apoptotic ND ND Yesb [53]

Anti-tumoral or cytotoxic ND Yes Yesc [12,53]

Hydroelectrolyte secretion by enterocytes Yes ND ND [12,53]
aAbbreviation: ND, not determined.
bInhibition of neutrophil apoptosis or induction of epithelial cell apoptosis.
cAt high concentrations.
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Gastrointestinal antimicrobial peptides: multifaceted
molecules
The antimicrobial activity of CAPs seems to be only the ‘tip
of the iceberg’ because pleiotropic functions have been
attributed to defensins and cathelicidins [53] (Table 1).
Both CAPs have the ability to chemoattract immunocytes
involved in innate immunity (neutrophils and monocytes
or macrophages), adaptive immunity (dendritic cells and T
lymphocytes) and allergic or inflammatory reactions (mast
cells). Furthermore, hBD-2 might activate the TLR4-
dependent signalling pathway in dendritic cells [54]. By
contrast, Hancock and colleagues recently reported that
LL-37 might dampen TLR-dependent activation in human
monocytes [55] and could promote maturation of dendritic
cells, resulting in Th1 polarization of T cells [56]. Taken as
a whole, these findings indicate that CAP interactions
might initiate and control the inflammatory response by
linking innate and acquired immunity (Table 1). Finally,
CAPs such as LL-37 have the ability to promote angiogen-
esis, as demonstrated by decreased vascularization during
skin wound repair in CRAMP-deficient mice [57]. Because
Paneth cell biology influences intestinal angiogenesis
through the recognition of commensals [58], these findings
might provide new insight into the pathogenesis of IBD.

Concluding remarks
Enteric CAPs have several essential and emerging roles in
both the innate and adaptive immunity of the gastrointest-
inal tract by modulating microbial resistance, angiogenesis
and chemotaxis and by promoting the humoral response
(Table 1). In particular, release of CAPs into the lumen is
thought to protect the mitotically active crypt cells (which
renew the epithelial cell monolayer) from colonization by
pathogenic microbes. The use of transgenic animals would
yield a better understanding of the physiological role and
regulation of these effectors. NOD1 and -2 have been shown
to exert bactericidal activity by modulating the epithelial
production of defensins, which suggests a possible mechan-
ism whereby PRMs might protect the host from the
www.sciencedirect.com
development of CD (Figure 2). Furthermore, reduced
expression of defensins in ileal CD might contribute to
changes in the luminal flora, thus generating vulnerability
throughout the epithelial barrier to infection with CD-
associated pathogens such as adherent-invasive E. coli
[59] and Mycobacterium paratuberculosis [60] (Figure 2).
The influenceof othermicrobial sensorsand theCAPson the
emergence of colonic disease also needs to be clarified
because thephysiologicalbacterial load ishigher in the colon
than in the small intestine. Finally, the use of mice with
mutant CAPs and a recently developed mouse model carry-
ingthemajorCD-associatedNOD2mutation [61]mighthelp
to determine whether impaired enteric defensin function
and/or natural NOD mutations are sufficient to trigger the
development of intestinal inflammatory diseases.

In conclusion, we believe that the development of novel
therapeutic strategies should now focus on tackling the
abnormal CAP expression observed in the gastrointestinal
tract of susceptible individuals; this could include the use
of synthetic CAP-like molecules (intrabiotic therapy) [62]
and/or modulators of CAP expression. In particular, the
increased b-defensin expression in inflammatory lesions of
patients with ulcerative colitis [63,64] could be diminished
by synbiotic therapy (a prebiotic–probiotic combination)
[65]. It is also noteworthy that hBD-2 expression can be
induced by certain probiotic strains [66] (such as E. coli
Nissle 1917), which suggests that abnormal defensin
expression might be improved by rational therapy.
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