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Phytocystatins are cysteine proteinase inhibitors from plants implicated in defense mechanisms against
insects and plant pathogens. We have previously characterized an amaranth cystatin cDNA and analyzed
its response to different kinds of abiotic stress [37]. In order to characterize amaranth cystatin, the coding
sequence was expressed in Escherichia coli using the pQE-2 vector. Recombinant cystatin was predom-
inantly found in the soluble fraction of the cell extract. Large amounts (266 mgL�1) of pure recombinant
protein were obtained by affinity chromatography in a single step of purification. The amaranth cystatin
with a pI 6.8 and an apparent 28 kDa molecular mass inhibited papain (E.C.3.4.22.2) (Ki 115 nM), ficin
(E.C.3.4.22.3) (Ki 325 nM) and cathepsin L (E.C.3.4.22.15) (Ki 12.7 nM) but not stem bromelain
(E.C.3.4.22.32), and cathepsin B (E.C.3.4.22.1) activities, in colorimetric assays. Furthermore, it was able to
arrest the fungal growth of Fusarium oxysporum, Sclerotium cepivorum and Rhyzoctonia solani. It was
further demonstrated that recombinant AhCPI is a weak inhibitor of the endogenous cysteine proteinase
activities in the fungal mycelium. These findings contribute to a better understanding of the amaranth
cystatin activity and encourage further studies of this protein.

� 2010 Published by Elsevier Masson SAS.
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E1. Introduction

Cystatins are proteinaceous inhibitors of cysteine proteinases
that have been identified in animals and plants. Those from plants,
known as Phytocystatins (PhyCys), cluster in a major evolutionary
tree branch of the cystatin superfamily of proteins [16].Most PhyCys
are small proteins ranging from 12 to 16 kDa. However, a group of
them with a molecular mass of 23 kDa containing a terminal
extension has been described [18,31,37]. To date, the physiological
significance of the C-terminal extension is unknown. However,
recent evidence has demonstrated that the carboxy-terminal
extensions are able to inhibit legumain peptidases [20]. Further-
more, an evolutionary comparative analysis of cysteine proteinases
and their putative inhibitors suggested a gene duplication event
associated with the increasing structural and functional
s cysteine proteinase inhib-
DTT, DL-dithiothreitol; DTE,

amino (4-guanidino)-butane;
b-D-Thiogalactoside; MALDI-
of flight; PMF, peptide mass
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complexities acquired in land plants [19]. Several 85 kDa multi-
cystatinswith eight cystatin domains, have been reported in tomato
and potato [38,40]. As multiphytocystatin domains clustered with
members of PhyCys from group I and are present in a restricted
number of species, it has been proposed that they resulted from
sequential duplication events of independent members of PhyCys
from group I [17]. In addition to a glycine residue near the
N-terminal part of the protein, the reactive site QXVXG and the PW
residues located in the second half of the molecule, common to all
cystatins, the PhyCys have a consensus LARFAVDEHN sequence in
the N-terminal portion of the protein [16].

Several PhyCys have been isolated from different species such as
soybean [24], maize [1], and barley [9]. They show variable
expression patterns during plant development and different
defense responses to biotic and abiotic stresses [9,22,37]. They
exhibit a wide range of inhibitory activities against different
cysteine proteinases. It has been proposed that PhyCys participate
in the regulation of activity of endogenous cysteine proteinases
during seed development and germination [30], in programmed
cell death [34], and in plant cell growth and proliferation [36].
Furthermore, they also participate in protecting plants against
insects and pathogens. In vitro studies have demonstrated phyto-
cystatin inhibition of insect gut proteinases [13]. In vivo studies
have demonstrated enhanced resistance obtained against insects
t amaranth cystatin (AhCPI) inhibits the growth of phytopathogenic
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Fig. 1. Analysis of the expression, solubility test and purification of the recombinant
AhCPI. (A) SDS-PAGE relating to the purification process of the AhCPI from E. coli cells:
(1) Total soluble protein extract from bacterial lysates. (2) Total soluble protein extract
from IPTG-induced bacterial lysates. (3) supernatant protein not retained in the Ni2þ

columm. (4) purified AhCPI after elusion with 250 mM imidazol. (B) SDS-PAGE
showing induction kinetics at 2 h (lane 1), 3 h (lane 2), 4 h (lane 3), and 5 h (line 4) and
solubility test of AhCPI. (C) 2D electrophorethic profile of the purified AhCPI. The
purified AhCPI was subjected to IEF in a 7 cm gel pH range 3e10, and the second
dimension in SDS-PAGE 12%. All samples contain 10 mg of protein, except purified
AhCPI that contain 5 mg. Molecular Markers (kDa) are indicated. The gels were stained
with Coomassie Brillant Blue G.
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[3], nematodes [4], and potyvirus [12] in transgenic plants over-
expressing phytocystatin genes. The induction of some PhyCys by
wounding and methyl jasmonate further supports their role in
defense [40]. The antifungal activity of PhyCys against phytopath-
ogenic fungi has already been reported in sugarcane [33], barley
[21], taro [41], strawberry [18], and wheat [7]. However, the
mechanism by which phytocystatin inhibits mycelium growth is
not yet understood. It has been suggested to be related to the direct
inhibition of a fungal cysteine proteinase [41]. However, there are
some reports in which the inhibition of plant-pathogenic fungi was
not associated with cystatin inhibition of cysteine proteinases [21].

Amaranth (Amaranthus hypochondriacus; Ah) is an ancient crop
native to the American continent. Its seed protein is characterized
by high nutritional quality. It is cultivated as an alternative to cereal
crops due to its capacity to produce reasonable yields in infertile
soils and semi-arid conditions [14]. Considering that amaranth
cultivation has been restricted to a few specific areas, it represents
a potential source of genes for pest control. In this respect, leaves
and seeds of amaranth accumulate cystatins and trypsin and
a-amylase inhibitors which are considered to be defensive factors
against insect pests. Moreover, their induction in plants following
different types of (a) biotic stress and related elicitors further
suggests that these inhibitors might contribute to the relatively
high tolerance to unfavorable ambient conditions observed for this
species in the field [32,37].

Recently we reported the cloning and molecular characteriza-
tion of a cDNA from developing amaranth seed encoding the cys-
tatin AhCPI. AhCPI is 24 kDa, and highly related in sequence to
cystatins with the C-terminal extension. Its expression is induced
by drought, salinity, and low temperatures [37]. In this paper, the
coding sequence of the amaranth cystatin was efficiently over-
expressed in Escherichia coli, demonstrating that the purified
recombinant AhCPI was an efficient inhibitor of cystein proteinases
and also has antifungal properties on several pathogenic fungi.

2. Results and discussion

2.1. Heterologous expression and purification of recombinant AhCPI

The AhCPI coding sequence obtained by PCR was subcloned in
frame in the expression vector pQE-2. This construct was intro-
duced into E. coli strain M15 (pREP4). The expression of AhCPI
protein was induced by adding 100 mM IPTG to Super broth culture
medium. SDS-PAGE analysis of recombinant protein clearly showed
a highly expressed protein of approximately 28 kDa in the super-
natant of bacterial lysate (Fig. 1A, lane 2), compared with the non-
induced control (Fig. 1A, lane 1). The size of the expressed protein
was larger than the expected size of 24 kDa. This difference in size
could be caused by structural features of AhCPI fusion to a histidine
tail. The identity of the recombinant AhCPI was confirmed by
Peptide Mass Fingerprint in a mass spectrometry MALDI-ToF. The
molecular mass of the peptides obtained by trypsin digestion
agrees with information deduced from the open reading frame
(data not shown).

To determine whether AhCPI was expressed in its soluble form,
cells that underwent IPTG-induction for 2e5 h were sonicated,
centrifuged and analyzed in SDS-PAGE (Fig. 1B). After different
induction times, most of the cystatin was recovered in its soluble
form and could be purified directly by affinity chromatography,
using a Ni2þ column. The recombinant protein was eluted in lysis
buffer containing 250 mM imidazole. This system was quite effi-
cient, since SDS-PAGE analysis revealed the presence of a single
band of AhCPI in the fraction collected (Fig. 1A, lane 4). The
homogeneity of the purified cystatin was confirmed by 2D elec-
trophoresis analysis that revealed a single 28 kDa spot with pI¼ 6.8
Please cite this article in press as: S. Valdes-Rodriguez, et al., Recombinan
fungi, Plant Physiol. Biochem. (2010), doi:10.1016/j.plaphy.2010.03.012
(Fig. 1C). The pI value of this protein was close to the theoretical
value (6.29).

The yield of purified amaranth cystatin was 266 mg per liter of
cell culture. This yield is very high, as compared with the values
reported for other PhyCys in other expression vectors. The
expressed cane cyststatins CPI-2 and CPI-3 were fusioned to
a histidine tail in pET 28; these constructs yielded 20 and 22 mg
per liter of cell culture, respectively [10]. The sugarcane and the
t amaranth cystatin (AhCPI) inhibits the growth of phytopathogenic
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sunflower cystatins expressed in the same vector yielded around
10 mg pure protein per liter of culture [33]. The high levels of
expression of recombinant AhCPI reported here suggest that the
pQE-2 system is an excellent choice for the production of
amaranth cystatin.

2.2. Inhibitory activity of the recombinant protein

The purified AhCPI was assayed against various cysteine
proteinases bymeasuring the residual proteolytic activity after pre-
incubation with different inhibitor concentrations. As shown in
(Fig. 2), proteolytic activity of papain, ficin and cathepsin L gradu-
ally decreased as the AhCPI concentration was increased. AhCPI at
1.0 mM reduced papain activity by 50%, whereas 2.4 mM of cystatin
produced a 47% decrease in ficin activity and 35 nM of cystatin
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Fig. 2. Inhibitory activity of purified recombinant AhCPI. The inhibitory activity was
assayed by measuring the remaining hydrolytic activity after pre-incubation (10 min)
of active enzymes with different inhibitor concentrations. BANA was used as substrate
for papain (A) and ficin (B) and Z-Phe-Arg-p-nitroanilide for cathepsin L (C). The Ki of
the enzymeeinhibitor complex were calculated by Dixon plot. Experiments were
repeated three times and the standard deviations are shown by vertical bars.

Please cite this article in press as: S. Valdes-Rodriguez, et al., Recombinan
fungi, Plant Physiol. Biochem. (2010), doi:10.1016/j.plaphy.2010.03.012

321
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reduces 52% of cathepsin L activity. In contrast, no inhibition was
found against stem bromelain at the highest level tested (up to
20 mM of AhCPI). This lack of inhibition of bromelain is common to
several plant cystatins [25].

The above results indicate that the recombinant cystatin was
effective in inhibiting papain, ficin, and cathepsin L. In these cases,
non-competitive inhibition kinetics were observed (data not
shown). A similar inhibitionmodel was reported in taro, strawberry
and soybean, members of the group of cystatins with a C-extension
[18,24,39]. Ki values of 115 nM for papain, 325 nM for ficin and
12.7 nM for carhepsin L. were determined from Dixon plot. Ki
values for papain and ficin are one order of magnitude higher than
those reported for most of the PhyCys [1,2,9]. It has been suggested
that the C-extension affects the affinity of these inhibitors for
cysteine proteinases. However, when comparing the Ki values of
AhCPI with the structurally related cystatins, the results were very
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Fig. 3. Effects of AhCPI on the growth of F. oxysporum (A), S. cepivorum (B), and R. solani
(C). Approximatelly one thousand spores from F. oxysporum and six pieces of scle-
rotinia from R. solani and S. cepivorum were inoculated in the absence and presence of
different concentrations of the recombinant AhCPI. Fungal growth was monitored
measuring absorbance at 492 nm and expressed as a percentage of growth in the
absence of the cystatin. Data are mean values of three independent replicates and the
standard errors are shown by vertical bars.
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variable. The highly homologous soybean (Ki 190 nM) and winter
wheat (Ki 580 nM) cystatins had similar Ki values against papain,
but the apple (Ki 1.2 nM) and strawberry (Ki 1.9 nM) cystatins
showed Ki values two orders of magnitude lower [7,18,24,31]. Apple
cystatin was a stronger inhibitor of ficin (Ki 3.2 nM) and bromelain
(Ki 3.8 nM), while AhCPI was a weak ficin inhibitor (Ki 325 nM) and
showed no activity against stem bromelain. In the inhibition of
cathepsin L, the Ki for AhCPI was almost the same as corn cystatin I
(17 nM), oryzacystatin I (51 nM) and oryzacystatin II (Ki 39 nM),
whereas Ki values for Phaseolus vulgaris and kiwifruit cystatins
were three (10 pM) and four orders (100 pM) of magnitude lower,
respectively [1,6,28]. There is no information about the Ki values for
cathepsin L with cystatins structurally related to AhCPI. However,
data could not be strictly compared because the experimental
conditions were different.

Here we demonstrated the ability of AhCPI to inhibit enzymatic
activity, however, a more detailed analysis would require the
excision of the polyhistidine tail, as it might interfere with the
protein’s function

2.3. Inhibition of fungal growth by recombinant AhCPI

The effect of purified AhCPI on the growth of three phytopath-
ogenic fungi (Fusarium oxysporum, Sclerotium cepivorum, and Rhy-
zoctonia solani) was determined by in vitro bioassays. AhCPI
inhibited the growth of the three fungi, but the inhibitory effect
varied depending on fungal species. As shown in (Fig. 3A), the
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Fig. 4. Microscopic photographs under light microscopy. (A) Fungal growth control without
R. solani (5 mM). (C) Spore germination inhibition of F. oxysporum (17.0 mM), S. cepivorum (5

Please cite this article in press as: S. Valdes-Rodriguez, et al., Recombinan
fungi, Plant Physiol. Biochem. (2010), doi:10.1016/j.plaphy.2010.03.012
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effective concentration for 50% growth inhibition was about 13 mM
for F. oxysporum. This value is not in agreement with the activity
reported by the barley and strawberry cystatins. In both species,
EC50 values were always lower than 3 mM [2,18]. However, in the
case of S. cepivorum, and R. solani, 380 nM and 160 nM concen-
trations were enough to obtain 50% growth inhibition, respectively.
In those cases AhCP showed stronger antifungal activity, as
demonstrated by the activity showed at lower concentrations than
the levels reported for other PhyCys on different fungal species
[2,7,18,21,35].

The toxic effects that the recombinant AhCPI exerted on the
growth of fungi were also monitored by microscopic observations.
In the control (without AhCPI), we observed the germination of
spores and the development of hyphae (Fig. 4). Themycelial growth
of F. oxysporumwas weakly diminished at 10 mMof AhCPI, while 2.5
and 5.0 mM of AhCPI produced a strong mycelial growth inhibition
in S. cepivorum and R. solani, respectively. Stronger spore germi-
nation inhibition was also observed in F. oxysporum, S. cepivorum
and R. solani at 17.0 mM, 5.0 mM and 10.0 mM of AhCPI, respectively.
These results clearly indicate that the AhCPI has antifungal activity.
To further understand the effect of AhCPI on the inhibition of
mycelium growth, crude protein samples were extracted from
mycelium of fungal cultures. These extracts were assayed for
proteolytic activity on 0.1% gelatin SDS-PAGE showing a single band
of hydrolytic activity for F. oxysporum, whereas three bands were
detected for R. solani and two bands for S. cepivorum (Fig. 5 lane 0).
The high apparent molecular masses found agree with previous
D

AhCPI, (B) Mycelial growth inhibition: F. oxysporum (10 mM), S. cepivorum (2.5 mM), and
.0 mM) and R. solani (10.0 mM).
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reports of this kind of enzymes in other fungi [26]. Mycelial
proteolytic activity of S. cepivorum was very low. Larger amount
(23 mg) of the protein crude extract was required to detect
proteolytic activity at pH 4.5. The results showed that crude protein
samples from F. oxysporum and R. solanimycelium contain cysteine
proteinases which were inhibited by E-64. On the contrary, the
proteolytic activity detected for S. cepivorumwas not inhibited by E-
64 (data not shown). On the other hand, AhCPI was aweak inhibitor
of the endogenous proteolytic activity of fungi. The addition of
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Fig. 5. Inhibition of recombinant AhCPI on fungal proteolytic activity. Crude protein
extracts obtained from mycelium of (A) F. oxysporum (1 mg), (B) R. solani (4 mg) and (C)
S. cepivorum (23.0 mg) were used to react with different concentrations of recombinant
AhCPI for 10 min at 37 �C. Then, proteolytic activity was analyzed on 0.1% gelatin SDS-
PAGE. The concentrations of AhCPI used are indicated above each lane. Molecular
Markers (kDa) are indicated. The gels were stained with Coomassie Brillant Blue G.
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20 mM, 30 mM and 45 mM of recombinant AhCPI produced a slight
decrease in the proteolytic activity detected in F. oxysporum, R.
solani and S. cepivorum, respectively (Fig. 5). The cystatin concen-
tration required to arrest the mycelial proteolytic activity was very
high compared to the concentration that inhibit fungal growth,
suggesting that the antifungal activity of AhCPI is probably not
mediated by the inhibition of fungal proteinases, as it has been
demonstrated to occur for the chestnut [27] and taro cystatins [41].
One possibility would be that AhCPI is directed to extracelullar
proteolytic enzymes. However, more detailed studies are required
to explain the high antifungal activity shown by AhCPI. In a recent
report it was shown that the antifungal effect of the barley cystatin
(Hv-CPI) and its derived mutants does not correlate with their
activities as proteinase inhibitors [21]. This is supported by
evidence presented by Wang et al. with a cystatin from taro [39].

Tarocystatin from Colocasia esculenta, a group-2 phytocystatin is
composed of a highly conserved N-terminal region, which is
homologous to group-1 cystatin, and a repetitive peptide at the C-
terminus. The kinetic analysis of the N-terminal region, the C-
terminal and the full length peptide on papain activity allowed
them to propose an inhibitory mechanism of group-2 PhyCyst. The
full length peptide was a stronger papain inhibitor than the N-
terminal peptide while the C-terminal lacks inhibitory activity. By
contrast, the antifungal activity of the N-terminal peptide appeared
to be greater than that of the full length peptide, and the C-terminal
peptide showed no antifungal activity, indicating that the anti-
fungal effect is not related to proteinase inhibitory activity.

It has been suggested that alterations in fungal membrane
permeability could be the origin of the antifungal properties of the
proteinase inhibitors [11]. Therefore, a future study, which provides
more detailed analysis, will be necessary to reveal the mechanisms
of antifungal activity demonstrated by cystatins. In previous work
we showed that AhCPI mRNAs increase in response to heat, cold,
water deficit and salinity treatments [37]. It is possible that AhCPI
expression could be positively correlated with the known tolerance
to arid and/or soil salinity conditions reported for field grown A.
hypochondriacus. The overall results reported here indicate that
AhCPI may be part of a mechanism designed to increase resistance
to both biotic and abiotic stress in amaranth.

3. Conclusion

This work describes the cloning, expression, purification and
characterization of the recombinant amaranth cystatin. This cys-
tatin was expressed in very high levels in E. coli. The purified
recombinant protein was an effective cysteine proteinase inhibitor
and a strong fungal growth inhibitor. It was able to reduce the
fungal growth of F. oxysporum, S. cepivorum and R. solani. However,
AhCPI produced a very slight decrease in the proteolytic activity
detected in mycelial fungi. It was suggested that antifungal activiy
is not mediated by fungal proteinase inhibition. The overall results
reported here indicate that AhCPI may be part of a mechanism
designed to increase resistance to biotic stress in amaranth.
Considering that amaranth cultivation has been restricted to a few
specific areas, it represents a potential source of genes for pest
control.

4. Methods Q

The cDNA encoding the amaranth cystatin (Gen-Bank, accession
number DQ792503) was previously isolated by our group [37]. The
pQE-2 vector and the M15 (pREP 4) strain of E. coli were provided
by Qiagen. Immobilized nickel resin was supplied by Invitrogen.
Papain, ficin, bromelain, cathepsin B, cathepsin L, DTT, DTE and the
substrate BANA were purchased from Sigma. The substrate Z-Phe-
t amaranth cystatin (AhCPI) inhibits the growth of phytopathogenic
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Arg-p-nitroanilide for cathepsin L was provided by Alexis
Biochemicals, Life Sciences, Inc. Fungal strains of F. oxysporum,
S. cepivorum and R. solani were provided by the laboratory of
Biochemical Ecology from Cinvestav.

4.1. Construction of the expression vector

The open reading frame coding for the AhCPI inhibitor, without
putative signal peptide, was amplified by PCR. The oligonucleotide
used as forward primer was: 50-AATTCCATATGCAGGCTACTCTTGG
TGGGTTACGT-30 which incorporated an NdeI restriction site
(underlined) and the substitution of the ATG start codon by
a glutamine codon (CAG bolded). This last changewas performed in
order to introduce a stop dipeptidyl aminopeptidase I enzymatic
activity to be used in combination with glutamine cyclotransferase
in the future to remove the histidine tail, added to the recombinant
protein in the pQE-2 vector. The reverse primer was: 50-AACTGCAG
GCATTACTGGTTCTCAATCTC-30 which added a PstI restriction site
(underlined) at the 3�end of the amplified fragment. Briefly, 10 ng of
template DNA, 200mM each dNTP,1� PCR buffer (20mM TriseHCl,
1.5 mM MgCl2, and 50 mM KCl (pH 8.4)), 20 pmol of each primer,
and 1 U of Platinum DNA polymerase (Roche Mannheim, Germany)
were used in a 50 ml reaction. The temperature protocol beganwith
a heating temperature of 95 �C for 5 min, followed by 35 cycles of
1min at 94 �C,1.5min at 60 �C and 1min at 72 �C. The amplification
product was cloned in frame in the restriction sites NdeI and PstI of
pQE-2. Chemically competent E. coli M15 (pREP 4) cells were
transformed using the described construct. The recombinant clones
were sequenced on an ABI Prism 377 DNA sequencer using the Big
Dye Terminator v 3.1 Cycle Sequencing kit (Applied Biosystems).

4.2. Expression of recombinant cystatin

Transformed cells were grown at 37 �C in Super Broth medium,
containing 100 mg mL�1 of carbenicillin and 25 mg mL�1 of
kanamycin, under agitation until they reached an OD600 of 0.5.
Expression was then induced by the addition of 0.1 mM IPTG.
Aliquots of the cell culture taken at 1 h intervals after up to 5 h of
inductionwere harvested by centrifugation. The pellets, suspended
in lysis buffer (50 mM NaH2PO4, 300 mM NaCl, and 10 mM imid-
azole, (pH 8.0)) were frozen and subjected to sonication for cell
disruption. The lysates were centrifuged at 13,000 � g at 4 �C for
15 min, soluble and insoluble fractions were analyzed in SDS-PAGE
12% according to the method of Laemmli [15].

4.3. Mass spectrometry identification

The identity of the IPTG-induced recombinant cystatin was
determined by PMF using Maldi-ToF Mass Spectrometry (Ettan,
Amersham Biosciences). The induced protein band recovered from
the gel was digested by trypsin (EC 3.4.21.19), and the peptide
mixture was analyzed by mass spectrometry. For identification, we
used the SWISS-PROT and TrEMBL databases with publicly availble
software (Profound, MASCOT and PepIdent (http://www.expasy.ch/
toolspeptide.html)).

4.4. Purification of recombinant cystatin by affinity
chromatography

AhCPI was purified using an affinity nickel resin column,
previously equilibrated with lysis buffer. The soluble fraction was
added and the column was washed with the same buffer. Proteins
were eluted with lysis buffer containing 250 mM imidazole.
Different protein fractions and purified product was analyzed on
SDS-PAGE.
Please cite this article in press as: S. Valdes-Rodriguez, et al., Recombinan
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Homogeneity of the purified cystatin was determined by 2D
electrophoresis. A 7 cm IPG strip (pH 3e10) was rehydrated over-
night at 22 �C with 125 mL of isoelectric focusing buffer (7 M urea,
2M thiourea, 2.65% CHAPS, 0.31% w/v DTT, 0.5% w/v pharmalyte pH
3e10) in which 5 mg of AhCPI were previously dissolved. IEF was
conducted at 22 �C with an IPGphor (Amersham BioScience),
applying 10000 Vh. The focused strip was equilibrated twice for
15 min. The first equilibration was performed in a solution con-
taining 6 M urea, 30% w/v glycerol, 2% w/v SDS, 1% w/v DTT, and
50 mM TriseHCl buffer, (pH 8.8). The second equilibration solution
was modified by the replacement of DTT with 2.5% w/v iodoace-
tamide. Separation in the second dimension was performed by
SDS-PAGE. The gel was stained with Coomassie Brilliant Blue. The
molecular mass of cystatin on gel was determined by co-electro-
phoresis of standard proteins markers (Amersham BioScience), pI
was determined by migration of the protein spots on 7 cm IPG (pH
3e10) linear strip.

4.5. Inhibitory activity of the recombinant AhCPI

Purified cystatin was tested against papain (E.C.3.4.22.2),
ficin (E:C.3.4.22.3), bromelain (E.C.3.4.22.32), and cathepsin B
(E.C.3.4.22.1) essentially as described by Gaddour et al. [9], using
BANA as substrate. The inhibitory activity against cathepsin L
(E.C.3.4.22.15) was assayed according to a modification of the
method of Rawlings and Barret [29], using Z-Phe-Arg-p-nitroanilide
as substrate. This assaywas performed in a 96-well microtiter plate.
The reaction mixture (180 ml per well) consisted of 15 ml of
cathepsin L (10 mM), the volume of substrate stock solution required
for a final concentration of 480 mM, and reaction buffer. The buffer
usedwas 50mMacetate buffer containing 10mMEDTA and 2.5mM
DTT (pH 6.0). Before addition of the substrate to the reaction
mixture, the buffer and the cathepsin Lwere incubated for 15min at
37 �C to activate the enzyme. After addition of the substrate, the
mixture was incubated at 37 �C for 15 min. The reaction was
monitored at 410 nmusing a 680model Benchmark plusmicroplate
reader provided with Microplate Manager software Versión 5.2.1
(Bio-Rad). Rates were calculated by linear regression of the data. As
a control for possible spontaneous release of p-nitroaniline, assays
were performed with substrate and buffer only; as a background
activity control. For inhibition assays, we used the same assay
procedures, except that before addition of the substrate, the
enzymes were incubated with the corresponding inhibitor for
10 min at 37 �C. In all assays the enzyme concentrations were
calculated by active-site titration with E-64 [5]. Protein concen-
tration was quantified by using the BioRad kit with bovine albumin
as standard. Inhibition was expressed as % of remaining protease
activity compared to controls without inhibitor. Ki values were
determined from plot (1/v versus [I]) [8].

4.6. Growth inhibition assay of phytopathogenic fungi

For a survey of the antimicrobial toxicity of AhCPI, three
phytopathogenic fungi were chosen for the growth inhibition
assay: F. oxysporum, S. cepivorum and R. solani. They were used as
models because of their pathogenicity against diverse plant species.
Approximately 103 spores of F. oxysporum and six pieces of scle-
rotinia from R. solani and S. cepivorumwere inoculated in 250 ml of
1/3 potato dextrose broth in the absence and presence of different
concentrations of the recombinant amaranth cystatin. The incu-
bation was carried out in sterile microtiter plate. F. oxysporum and
R. solani were grown at 28 �C for 48 h, and S. cepivorumwas grown
at 24 �C for 72 h. Fungal growth was monitored by measuring
absorbance at 492 nm and by microscopic observations. Results
were expressed as the percentage of relative growth in the absence
t amaranth cystatin (AhCPI) inhibits the growth of phytopathogenic

http://www.expasy.ch/toolspeptide.html
http://www.expasy.ch/toolspeptide.html
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of the AhCPI. Experiments were repeated at least three times with
similar results.

4.7. Inhibition of fungal proteinases

An inhibition test of AhCPI on fungal cysteine proteinase activity
was carried out as follows: fungi were grown in PDB medium for
48 h (F. oxysporum and R. solani) or 72 h (S. cepivorum) at the same
conditions described before. Mycelium was recovered by centrifu-
gation and ground to a fine power with liquid nitrogen. The soluble
proteins were extracted by shaking for 30 min at 4 �C with 50 mM
phosphate buffer, containing 10mMEDTA and 2.5mMDTT (pH 6.0)
(1:3 wt/vol). The homogenate was centrifuged at 12 000 � g for
30 min at 4 �C and the supernatants were recovered. Protein
samples of the mycelium extracts were used to react with different
concentrations of recombinant AhCPI and E-64 for 15 min at 37 �C.
Then, proteolytic activity was analyzed on 0.1% gelatin SDS-PAGE
according to the procedure described by Michaud et al. [23].
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