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An antifungal protein with a molecular mass of 11 kDa and a lysine-rich N-terminal

sequence was isolated from the seeds of the pea Pisum sativum var. arvense Poir. The

antifungal protein was unadsorbed on DEAE-cellulose but adsorbed on Affi-gel blue gel and

CM-cellulose. It exerted antifungal activity against Physalospora piricola with an IC50 of

0.62 mM, and also antifungal activity against Fusarium oxysporum and Mycosphaerella arachi-

dicola. It inhibited human immunodeficiency virus type 1 reverse transcriptase with an IC50

of 4.7 mM.
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1. Introduction

Leguminous plants produce a number of proteins including

lectins [51,57], trypsin inhibitors [56], ribosome inactivating

proteins [17] and antifungal proteins [9,32,44,47,50,52–61].

These proteins serve to protect the plants from pathogens and

predators.

Antifungal proteins help plants to combat phytopathogenic

fungi and thus protect plants from the devastating damage

caused by fungal infections and prevent massive economic

losses. Transgenic plants expressing antifungal proteins are

expected to be resistant to fungal infections. Consequently,

research on antifungal proteins has attracted the attention of

many investigators. Antifungal proteins have been found in or

isolated from mammals [26], insects [20,36], plants [2,27,31,35]

and fungi [10,11,16,24].
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The pea Pisum sativium is a common vegetable. From it a

lectin [51] and a ribosome inactivating protein [17] have been

isolated. No antifungal activity of these proteins has been

reported although lectins [1,8,57] and ribosome inactivating

proteins [16] with antifungal activity have been isolated from

other sources.

The isolation and characterization of an antifungal protein

from its seeds are described herein. The isolation of legumi-

nous antifungal proteins is considered to be a worthwhile task.

This is because plants produce a host of antifungal proteins

comprising thaumatin-like proteins [5,9,13,25,33,34,48,50],

chitinases [28,30], chitinase-like proteins [18,58], chitin binding

proteins [12,29], defensins, defensin-like proteins [23,45–47],

miraculin-like proteins [60], embryo-abundant proteins [38],

ribosome inactivating proteins [19], lipid transfer protein-like

proteins [2,44], protease inhibitors [3,4,14,21] and new pro-

teins/peptides [7,22,49].
.
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Table 1 – Yields of different chromatographic fractions
(from 500 g dry seed)

Fraction Yield (mg) Fraction Yield (mg)

D1 930.3 CM1 29.6

D2 1157.0 CM2 65.4

B1 179.5 CM3 94.1

B2 272.1 SU1 15.3

B3 208.9 SU2 18.8

SU3 30.7
2. Materials and methods

2.1. Purification of antifungal protein

Dried seeds of P. sativum var. arvense Poir (500 g) were

obtained from a local Indian shop. After homogenization in

distilled water (3 ml/g) and centrifugation (12,000 � g for

20 min), the resulting supernatant was loaded on a

5 cm � 20 cm column of DEAE-cellulose (Sigma) in 10 mM

Tris–HCl buffer (pH 7.2). After the flowthrough material had

been collected as fraction D1, adsorbed proteins were

desorbed with 10 mM Tris–HCl buffer containing 0.8 M NaCl

to yield fraction D2. Fraction D1 was subjected to affinity

chromatography on a 5 cm � 10 cm column of Affi-gel blue gel

(Bio-Rad) in 10 mM Tris–HCl buffer (pH 7.2). After removal of

the flowthrough fraction B1, adsorbed proteins were desorbed

stepwise with 0.2 M NaCl and 1 M NaCl in the Tris–HCl buffer

to yield fractions B2 and B3, respectively. Fraction B2 was then

chromatographed on a 2.5 cm � 20 cm column of CM-cellulose

(Sigma) in 10 mM NH4OAc buffer (pH 4.5). After unadsorbed

proteins had been eluted as fraction CM1, adsorbed proteins

were desorbed with a linear concentration (0–1 M) gradient of

NaCl. The second adsorbed fraction CM3 was subjected to gel

filtration by fast protein liquid chromatography on a Superdex

75 HR 10/30 column in 0.2 M NH4HCO3 buffer (pH 8.5) using an

AKTA Purifier (Amersham Biosciences). The last fraction (SU3)

constituted purified antifungal protein.

2.2. Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE)

It was conducted according to the method of Laemmli and

Favre using 18% gel [15]. After electrophoresis the gel was

stained with Coomassie Brilliant Blue. The molecular mass of

the isolated peptide was determined by comparison of its

electrophoretic mobility with those of molecular mass marker

proteins from Amersham Biosciences.

2.3. Amino acid sequence analysis

The N-terminal amino acid sequence of the isolated

peptide was analyzed by means of automated Edman

degradation using a Hewlett Packard 1000A protein sequencer

equipped with an HPLC system [17].

2.4. Assay for cell-free translation-inhibitory activity

Rabbit reticulocyte lysate was prepared from the blood of

rabbits rendered anemic by phenylhydrazine injections. An

assay based on the rabbit reticulocyte lysate system was used.

The isolate peptide (10 ml) was added to 10 ml of radioactive

mixture (500 mM KCl, 5 mM MgCl2, 130 mM phosphocreatine

and 1 mCi-[4,5-3H] leucine) and 30 ml working rabbit reticulocyte

lysate containing 0.1 mM hemin and 5 ml creatine kinase.

Incubation proceeded at 37 8C for 30 min before addition of

330 ml 1 M NaOH and 1.2% H2O2. Further incubation for 10 min

allowed decolorization and tRNA digestion. An equal volume of

the reaction mixture was then added to 40% trichloroacetic acid

with 2% casein hydrolyzate in a 96-well plate to precipitate

radioactively labeled protein. The precipitate was collected on a
glass fiber Whatman GF/A filter, washed and dried with

absolute alcohol passing through a cell harvester attached to

a vacuum pump. The filter was suspended in scintillant and

counted in an LS6500 Beckman liquid scintillation counter [17].

2.5. Assay of antifungal activity

The assay for antifungal activity toward Botrytis cinerea,

Mycosphaerella arachidicola, Fusariumoxysporum,Rhizoctonia solani

and Coprinus comatus was carried out in 100 mm� 15 mm Petri

plates containing 10 ml of potato dextrose agar. After the

mycelial colony had developed, at a distance of 0.5 cm away

from the rim of the mycelial colony were placed sterile blank

paper disks (0.625 cm in diameter). An aliquot of a solution of

the isolated peptide was added to a disk. The plates were

incubated at 23 8C for 72 h until mycelial growth had enveloped

disks containing the control and had formed crescents of

inhibition around disks containing samples with antifungal

activity [45–47].

To determine the IC50 value for the antifungal activity, three

doses of the isolated peptide were added separately to three

aliquots each containing 4 ml potato dextrose agar at 45 8C,

mixed rapidly and poured into threeseparate small Petri dishes.

After the agar had cooled down, a small amount of mycelia, the

same amount to each plate, was added. Buffer only without

antifungal peptide served as a control. After incubation at 23 8C

for 72 h, the area of the mycelial colony was measured and the

inhibition of fungal growth determined [45,47].

2.6. Assay for HIV reverse transcriptase inhibitory activity

The ability of the peptide to inhibit HIV-1 reverse

transcriptase was assessed by using an ELISA kit from

Boehringer Mannheim (Germany) as described in ref. [46].

2.7. Assays for DNase, RNase, peroxidase, trypsin
inhibitory and hemagglutinating (lectin) activities

The assays were conducted as described in refs.

[39,42,53,56,57], respectively.
3. Results

The yields of the various chromatographic fractions are

presented in Table 1. Antifungal activity was detected in the

fraction of pea extract unadsorbed on DEAE-cellulose (D1) and

subsequently adsorbed on Affi-gel blue gel (B2) (data not
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Fig. 1 – Ion exchange chromatography on CM-cellulose.

Column dimensions: 2.5 cm � 20 cm. Sample: fraction B2

from Affi-gel blue gel column. Buffer: 10 mM NH4OAc

buffer (pH 4.5). Dotted line across the right half of the

chromatogram represents 0–1 M NaCl concentration

gradient used to desorb adsorbed proteins.

Fig. 3 – SDS-PAGE results. Left lane: Pisum sativum

antifungal protein (fraction SU3). Right lane: molecular

mass standard from Amersham Biosciences.

Table 2 – NH2-terminal sequence of P. sativum antifungal
protein

Pisum sativum antifungal protein AKKK

KTEEN

Pachyrhizus erosus defensin (1–5) KTCEN

Vigna radiata PDF1 (29–33) KTCEN

Cajanus cajan antifungal protein (28–32) KTCEN
shown). Fraction B2 was resolved on CM-cellulose into an

unadsorbed fraction CM1 and two adsorbed fractions (CM2

and CM3) of increasing size (Fig. 1). Fraction CM3 was

fractionated on Superdex 75 into three fractions. Antifungal

activity resided in the last fraction SU3 (Fig. 2). Fraction SU3

appeared as a single band with a molecular mass of 11 kDa in

SDS-PAGE (Fig. 3) and a peak with the same molecular mass in

gel filtration (Fig. 2). It represented purified antifungal protein.

Its N-terminal sequence is shown in Table 2. It showed some

similarities to defensins. Its antifungal activity toward the

fungi M. arachidicola, F. oxysporum and Physalospora piricola is

illustrated in Figs. 4–6, respectively. Its antifungal activity

toward P. piricola was determined to be 0.62 mM (Fig. 6). It

caused 21.2, 60.7 and 91.5% inhibition of HIV-1 reverse

transcriptase at 0.8, 8 and 80 mM, respectively. The IC50 was

4.7 mM. It had no detectable DNase, RNase, peroxidase, trypsin

inhibitory or hemagglutinating activity (data not shown). A
Fig. 2 – Gel filtration by fast protein liquid chromatography

on a Superdex 75 HR 10/30 column using an AKTA Purifier.

Sample: fraction CM3 from CM-sepharose column. Buffer:

0.2 M NH4HCO3 buffer (pH 8.5). Flow rate: 0.4 ml/min.

Fraction size: 0.8 ml.

Fig. 4 – Inhibitory activity of P. sativum antifungal protein

on mycelial growth in Mycospaerella arachidicola. (A) Fifteen

microliters 50 mM MES buffer. (B) Seventy-five

micrograms antifungal protein in MES buffer. (C) Fifteen

micrograms antifungal protein in MES buffer.
comparison of the isolated antifungal protein with other

antifungal proteins is presented in Table 3.
4. Discussion

The antifungal protein isolated in this study has a lysine-

rich N-terminal sequence. Its antifungal potency as indicated

by the IC50 value (below 1 mM) is higher than the potencies (IC50

values well above 1 mM) of most of the previously reported

antifungal proteins [34,35]. It inhibits mycelial growth in each

of three fungal species tested: F. oxysporum, M. arachidicola and
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Fig. 5 – Inhibitory activity of P. sativum antifungal protein

on mycelial growth in Fusarium oxysporum. (A) Fifteen

microliters 50 mM MES buffer. (B) Seventy-five

micrograms antifungal protein in MES buffer. (C) Fifteen

micrograms antifungal protein in MES buffer. Fig. 6 – Determination of IC50 value of antifungal activity of

P. sativum antifungal protein toward Fusarium oxysporum.

(A) Control, (B) 0.16 mM antifungal protein, (C) 0.8 mM

antifungal protein and (D) 4 mM antifungal protein. IC50

was determined to be 1.4 mM.
P. piricola. This is in contrast to some of the antifungal proteins

which inhibit only one out of the several fungal species

examined [37,39], and similar to the majority of antifungal

proteins which are inhibitory to a number of fungi [34–

36,38,40–47,50,52–61].

The pea antifungal protein obtained in this study was

purified by using a procedure found to be efficient for other

antifungal proteins [34–43,45–47,50–61]. Generally speaking,

they are unadsorbed on DEAE-cellulose and adsorbed on Affi-

gel blue gel and CM-sepharose/CM-cellulose. The final

purification step is gel filtration on Superdex 75.

Some antifungal proteins, e.g. mungin, a cyclophilin-like

antifungal protein from mung beans, are devoid of HIV-1

reverse transcriptase activity [54]. The isolated pea antifungal

protein demonstrated an HIV-1 reverse transcriptase inhibi-

tory activity with an IC50 of about 5 mM, which represents a

fairly potent activity.

The entire N-terminal sequence of pea antifungal peptide is

not found in the sequence of any known protein, indicating
Table 3 – Comparison of Pisum sativum antifungal protein with

P. sativum antif

Molecular mass (kDa) 11

Chromatographic behavior

(i) DEAE-cellulose Unadsorbed

(ii) Affi-gel blue gel Adsorbed

(iii) CM-cellulose (Mono S) Adsorbed

Antifungal activity

(i) F. oxysporum Present

(ii) M. arachidicola Present

(iii) P. piricola IC50 = 0.62 mM

HIV-1 reverse transcriptase inhibitory activity (IC50) 4.7 mM

DNase activity Undetectable

RNase activity Undetectable

Peroxidase activity Undetectable

Lectin activity Undetectable

Trypsin inhibitory activity Undetectable
that the antifungal peptide may be a novel peptide. Never-

theless, it exhibits some sequence similarity to leguminous

defensins.

Antifungal proteins show a wide range of molecular

masses, from 6 to 7 [45–47,52] to tens of kilodaltons

[33,34,41,42,52,58,60]. Pea antifungal peptide manifests a

molecular mass of 11 kDa, which is at the lower end of the

range. Pea antifungal peptide is devoid of DNase, RNase,

peroxidase, lectin and trypsin inhibitory activities, indicating

that its antifungal activity is not due to any of these proteins. It

is known that some DNases [39], RNases [42], peroxidases [53],

lectins [1,8,57] and trypsin inhibitors [6,56] have an antifungal

action.

In summary, a small antifungal protein with high potency

was isolated from a variety of the pea P. sativum.
other antifungal proteins

ungal proteins Other antifungal proteins

6–67

Unadsorbed

Adsorbed

Adsorbed

Less than 1 mM to over 10 mM

Less than 1 mM to over 10 mM

Less than 1 mM to over 10 mM

Less than 1 mM to over 30 mM

Some DNases have antifungal activity

Some RNases have antifungal activity

Some peroxidases have antifungal activity

Some lectins have antifungal activity

Some trypsin inhibitors have antifungal activity
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