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Abstract

Mycotoxins are secondary metabolites produced by many important phytopathogenic and food spoilage fungi including
Aspergillus, Fusarium and Penicillium species. The toxicity of four of the most agriculturally important mycotoxins (the
trichothecenes, and the polyketide-derived mycotoxins; aflatoxins, fumonisins and sterigmatocystin) are discussed and their
chemical structure described. The steps involved in the biosynthesis of aflatoxin and sterigmatocystin and the experimental
techniques used in the cloning and molecular characterisation of the genes involved in the pathway are described in detail. The
biosynthetic genes involved in the fumonisin and trichothecene biosynthetic pathways are also outlined. The potential benefits
gained from an increased knowledge of the molecular organisation of these pathways together with the mechanisms involved in
their regulation are also discussed. © 1999 Federation of European Microbiological Societies. Published by Elsevier Science

B.V. All rights reserved.
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1. Introduction

Mycotoxins are a group of secondary metabolites
which are produced by various filamentous fungi,
and which can cause a toxic response, termed a my-
cotoxicosis, if ingested by higher vertebrates and oth-
er animals. The mycotoxigenic fungi involved in the
human food chain belong mainly to three main gen-
era: Aspergillus, Penicillium and Fusarium. The for-
mer two genera are commonly found as contami-
nants of foods during drying and storage while the
latter are plant pathogens which produce mycotoxins
before, or immediately after harvesting.

Aflatoxins are the group of mycotoxins which are
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of greatest significance in foods and feeds, and are
produced mainly by Aspergillus flavus and Aspergil-
lus parasiticus. The four main aflatoxins produced
are By, B, G; and Gs. They are difuranocoumarin
derivatives (Fig. 1), with the B and G nomenclature
deriving from the blue and green fluorescent colours
produced under UV light on thin layer chromatog-
raphy plates; with the subscript numbers indicating
major and minor compounds respectively. Aflatoxin
B; (AFB;) is widely regarded as the most potent
liver carcinogen known for a wide variety of animal
species, including humans [1]. Aflatoxin M; and M,
are hydroxylated derivatives of AFB; and AFB,,
which are formed and excreted in the milk of lactat-
ing animals including humans, that have consumed
aflatoxin-contaminated foods. A precursor of the
aflatoxins, sterigmatocystin (ST), is a mycotoxin
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Fig. 1. Common toxins produced by Aspergillus and Penicillium
species.

which is characterised by a xanthone moiety fused to
a dihydrodifuran or tetrahydrofuran moiety; it is
also acutely toxic and carcinogenic [2].

The trichothecenes are a group of mycotoxins
which are produced by several fungal genera includ-
ing Fusarium, Trichoderma, Trichothecium, Stachybo-
trys, Cephalosporium and Myrothecium. The tricho-
thecenes are chemically very diverse (Fig. 2), but are
all tricyclic sesquiterpenes with a 12,13-epoxy-tricho-
thec-9-ene ring. They can be designated into four
subclasses: type A having a functional group other
than a ketone at position C-8; type B having a ke-
tone at position C-8; type C having a second epoxy
group at C-7, C-8, C-9 or C-10; and type D contain-
ing a macrocyclic ring between C-4 and C-5 with two
ester linkages [2]. The non-macrocyclic trichothe-
cenes are frequently less cytotoxic, e.g. T-2 toxin,
diacetoxyscirpenol and deoxynivalenol, and are pri-
marily produced by Fusarium equiseti, F. graminea-
rum and F. sporotrichioides, whilst the more complex
macrocyclic trichothecenes are commonly associated
with members of the genus Myrothecium [3,4]. Inter-
estingly, two members of the Brazilian plant genus,

Baccharis, produce macrocyclic trichothecenes,

although evidence suggests that the mycotoxin may
also be synthesised by an endophytic fungus [4]. Tri-
chothecenes are known to cause alimentary toxic
aleukia, fusariotoxicoses and to be cytotoxic to
mammalian cells. In addition they are immunotoxic
and potent inhibitors of protein synthesis, which can
result in a predisposition to other diseases and mask
the underlying toxicoses [5]. In addition to their role
in animal and human health, many trichothecene-
producing fungi are phytopathogenic and its has
been suggested that trichothecenes may function as
virulence factors in plant disease [4,6,49].

The fumonisins are another important group of
mycotoxins produced primarily by the cereal patho-
gen, Fusarium moniliforme. A number of other fun-
gal species also produce fumonisins including F. pro-
liferatum, F. anthophilum, F. dlamini, F. napiforme
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Fig. 2. Important toxins produced by Fusarium species.
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and Alternaria alternata f. sp. lycopersici [7]. Their
chemical structure, which is a C-20, diester of pro-
pane-1,2,3-tricarboxylic acid and a pentahydroxyico-
sane containing a primary amino group (Fig. 2), re-
sembles sphingosine (sphinganine), which forms the
backbone of sphingolipids. The fumonisins are com-
petitive inhibitors of sphingosine N-acetyltransferase
which results in the blocking of complex sphingolipid
biosynthesis and the accumulation of sphingosine [7].
The most abundant fumonisin produced in nature is
fumonisin B; (FBy) which can cause leukoencepha-
lomalacia in horses and pulmonary oedema syn-
drome in pigs and is hepatotoxic and hepatocarcino-
genic in rats [7,8]. Fumonisins may also be
implicated in the epidemiology of oesophageal can-
cer in humans. Although no experimental evidence
exists the occurrence of F. moniliforme-infected
maize and production of fumonisins has been corre-
lated with a higher incidence of oesophageal cancer
in specific geographical regions of China and South
Africa [7,9].

2. Biosynthetic pathways
2.1. Aflatoxins and sterigmatocystin

The aflatoxin biosynthetic pathway is well under-
stood and has recently been reviewed [10,11,50]. Ini-
tially, acetate and malonyl CoA are converted to a
hexanoyl starter unit by a fatty acid synthase, which
is then extended by a polyketide synthase to norso-
lorinic acid, the first stable precursor in the pathway.
The polyketide then undergoes approximately 12—17
enzymatic conversions, through a series of pathway
intermediates, which are summarised in Fig. 3. Fol-
lowing the formation of versicolorin B, the pathway
branches to form AFB; and AFG; which contain
dihydrobisfuran rings and are produced from deme-
thylsterigmatocystin (DMST); and the other branch
forms AFB,; and AFG,, which contain tetrabisfuran
rings and are produced from dihydrodemethylsterig-
matocystin (DHDMST).

While aflatoxins are produced only by certain
strains of A. parasiticus, A. flavus and A. nominus,
numerous ascomycetes and deuteromycetes including
A. nidulans produce the mycotoxin sterigmatocystin
(ST), the penultimate intermediate in the AF biosyn-

thetic pathway. The ST pathway is believed to in-
clude at least 15 enzymatic activities involving each
enzyme activity from the AF pathway bar the penul-
timate steps involving the conversion of ST to AF.

Several of the enzymes involved in the AF path-
way have been purified to homogeneity (for review
see [11]). A 78-kDa versicolorin B synthase enzyme
has been isolated which is involved in the cyclisation
of versiconal to versicolorin B. This enzyme is be-
lieved to be the pivotal enzyme in determining the
stereochemistry of the bisfuran ring in the aflatoxins.
In addition, a tetrahydrobisfuran cyclising enzyme
vericonyl cyclase has been purified which is respon-
sible for the conversion of versiconal to versicolorin
B. Three different enzymes have been characterised
which appear to be involved in the conversion of
norsolorinic acid to averantin: a 38-kDa norsolorinic
reductase (NAR), a 43-kDa isozyme of the reductase
and a 140-kDa NAR. Two versiconal hemiacetal
(VHA) reductases (VHA 1 and II), which convert
VHA to versiconal acetate, have been purified from
A. parasiticus. Also three esterases which catalyse the
conversion of versiconal acetate to versiconal acetate
have recently been isolated.

A number of methyltransferases involved in the
pathway have also been characterised. A 168-kDa
O-methyltransferase and a 40-kDa methyltransferase
corresponding to MT-II, which are involved in the
conversion of ST to O-methylsterigmatocystin and
dihydrosterigmatocystin to dihydro-O-methylsterig-
matocystin, respectively, have been purified. More
recently another O-methyltransferase (MT-1), with
a molecular mass of 150 kDa, which is involved in
the conversion of DMST to ST and of DHDMST to
dihydrosterigmatocystin (DHST), has been purified
[12].

2.2. Trichothecenes

The trichothecene pathway begins with the cycli-
sation of farnesyl pyrophosphate (FPP) to tricho-
diene by the enzyme trichodiene synthase (Fig. 4).
This is the only enzyme in the biosynthetic pathway
that has been purified and characterised to date, and
the dimer, with a subunit molecular mass of 45 kDa,
has been isolated from four fusaria including Fusa-
rium sporotrichioides [13]. The subsequent pathway
involves a number of oxygenations, isomerisations,
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Fig. 3. Aflatoxin and sterigmatocystin biosynthetic pathway. Enzymes involved: (a) fatty acid synthase, (b) polyketide synthase, (c) norso-
lorinic acid reductase, (d) versiconal hemiacetal acetate reductase, (e) esterase, (f;) versicolorin B synthase, (f) versiconyl cyclase, (g) desa-
turase, (h) O-methyltransferase (MT-II), (i) O-methyltransferase, (j) O-methyltransferase (MT-I). Genes involved in aflatoxin biosynthesis:
[A] faslA and fas2A, [B] pksA, [C] norl, norA, [D] avnA, [E] avfl (aflB and aflW), [F] vbs, [G] verB, [H] verlA, aflS, [I] omtA and [J]
ordl. Genes involved in sterigmatocystin biosynthesis: [a] stcJ and stcK, [b] stcA, [c] stcE, [d] stcF, [e] stcl, [f] stcN, [g] stcL, [h] steS, [i]

steU and [] stcP. (Compiled from [11,18,21,50].)
P

cyclisations and esterifications leading from tricho-
diene to diacetoxyscirpenol, T-2 toxin and 3-acetyl-
deoxynivalenol. All of the intermediates except those
involved in the earlier steps of the non-macrocyclic
biosynthetic pathway have been confirmed by feed-
ing studies [14]. In contrast, the macrocyclic biosyn-
thetic pathway is much less understood; only the end
products and late intermediates of the pathway have
been isolated and characterised [15].

2.3. Fumonisins

Fumonisins are thought to be synthesised through
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the condensation of the amino acid alanine to an
acetate-derived precursor. Branched-chain methyl
groups are added at C-12 and C-16 by an S-adenosyl
methionine transferase. The subsequent biosynthetic
steps involving oxygenation and esterification of the
acetate-derived backbone are as yet unknown. It is
not clear whether oxygenation and methylation oc-
cur before or after condensation with alanine. How-
ever, it appears likely that less oxygenated trichothe-
cenes such as FB,;, FB3 and FB, are precursors of
the more highly oxygenated FB; (Fig. 5) [16]. To
date, no enzymes involved in the fumonisin biosyn-
thetic pathway have been isolated.
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Fig. 4. Trichothecene biosynthetic pathway in Fusarium species. Genes involved: [A] Tri 5, [B] Tri 4 and [C] Tri 3. (Taken from [44].)
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3. Cloning and molecular characterisation of the
aflatoxin and sterigmatocystin biosynthetic genes

Early studies on the genetics of AF/ST biosynthe-
sis employed A. flavus and A. parasiticus mutants,
either partially or fully blocked in AF production,
indicating the possibility that some of the AF genes
were clustered [17]. Molecular genetics confirmed
these initial reports, as the development of efficient
DNA transformation systems for both A. flavus and
A. parasiticus allowed the elucidation of genes corre-
sponding to the enzyme activities of the AF/ST path-
way [10,11,18]. Two gene transfer techniques, gene
complementation which involves the restoration of
gene function in AF blocked mutants and gene dis-
ruption where ‘knock-out’ strains are formed, have
been invaluable in assigning the function of the iso-
lated AF/ST genes. The AF biosynthetic genes are
clustered in A4. flavus and A. parasiticus and the gene
cluster has been located on a 4.9-Mb chromosome in
A. flavus [19]. Mapping studies and complementation
of an AF gene cluster-deleted mutant of A. flavus
indicated that all of the cloned aflatoxin biosynthetic
genes are located within a 75-90-kb region [20,21].
The physical order of the genes in the cluster appears
to largely coincide with the sequential enzymatic
steps of the pathway and both gene organisation
and structure are very conserved within 4. flavus
and A. parasiticus. The significance of this gene clus-
tering is not known although the involvement of
chromosome structure in gene regulation may be
possible. In addition the conserved nature of the
AF gene cluster suggests that the function or regu-
lation of AF biosynthesis may rely on an intact
structural organisation [10]. Many of the genes en-
coding enzymes involved in the AF biosynthetic
pathway in both A. flavus and A. parasiticus have
been cloned (Table 1A and Fig. 3). The genetics of
the ST biosynthetic pathway of A. nidulans has been
recently elucidated, which has furthered our under-
standing of the AF pathway (Table 1B and Fig. 3).
A 60-kb region of chromosome IV of A. nidulans has
been identified, which encodes 25 co-regulated tran-
scripts which are thought to encompass most or all
of the genes involved in ST biosynthesis [22]. The
functions of many of these szc genes have been as-
signed experimentally, whilst the putative functions
of the others have been assigned from the identity of

the deduced amino acid sequences to enzymes pre-
dicted to the involved in the ST/AF biosynthetic
pathway. The ST biosynthetic genes in A. nidulans
are functionally and physically conserved with the
AF genes of A. flavus and A. parasiticus, although
differences in gene order and the direction of tran-
scription are evident. The characterisation of the
genes of the AF/ST biosynthetic pathway, together
with the techniques employed for their isolation and
confirmation of function, will be outlined.

Two of the genes of the ST gene cluster in A.
nidulans, stcJ and stcK, encode the a- and B-subunit
of a fatty acid synthase (FAS) which is specific for
the formation of the hexanoate starter of ST. Dis-
rupted stcJ/stcK mutants do not synthesise ST, but
retain the ability to do so when provided with hex-
anoic acid [23]. Two functional homologues of stcJ
and stcK were isolated in A. parasiticus, faslA and
fas2A. faslA was cloned by complementation of an
A. parasiticus double mutant (blocked at norl, re-
sponsible for the conversion of norsolorinic acid,
and at a preceding step) resulting in the restoration
of norsolorinic acid (NA) production [24]. The sub-
sequent disruption of fas/A prevented NA accumu-
lation in a norl-blocked A. parasiticus mutant which
normally accumulated NA. Homology of the pre-
dicted product of norl with functional domains of
the B-subunit of a yeast FAS suggests that the
faslA gene encodes a FAS which synthesises part
of the hexanoate starter of AF. A second FAS
gene, fas2A, has been located next to fas/A and is
suspected to function as the B-subunit of this specific
FAS [25].

The subsequent extension of the hexanoate starter
by a specialised polyketide synthase (PKS) was sup-
ported by the isolation of stcA (formerly pksST).
stcA was revealed by transcriptional mapping of ge-
nomic DNA cosmids of A. nidulans which hybridised
to a norl cDNA fragment and a 55-kb deleted region
of a non-sterigmatocystin-producing mutant, and
shows significant amino acid identity to two other
PKSs of A. nidulans [26,27]. The functional homo-
logue of stcA in A. parasiticus, pksA (formerly
pksLl), was independently cloned by polymerase
chain reaction (PCR) amplification with degenerate
primers and by gene disruption of an O-methylster-
igmatocystin-accumulating strain of A. parasiticus,
which resulted in a mutant unable to produce NA
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Fig. 5. Proposed pathway for fumonisin biosynthesis. R; designates tricarballylic acid esters. Genes involved: [A] fum 1, [B] fum 3 and

[C] fum 2. (Taken from [16].)

[28,29]. The next step in the AF/ST pathway, where
NA is converted to averantin (AVN), may involve
the putative ketoreductase encoding gene in A. nidu-
lans, stcE, whilst subsequent conversion of AVN to
averufin (AVF) may involve stcF which encodes a
putative P-450 monooxygenase, although this has
not been confirmed [22]. The apparent homologue
of stcE, norl, was isolated by the complementation
of an A. parasiticus mutant which accumulated NA.
The role of norl was confirmed by the disruption of
norl in aflatoxigenic isolates of A. parasiticus which
resulted in the accumulation of NA [30]. The identity
of norl as an NADPH-dependent reductase was con-
firmed by a norl/maltose-binding protein fusion as-
say where transformed Escherichia coli converted
NA to AVN in the presence of NADPH. A second
reductase capable of converting NA, which shows
little homology to norl, norA, was located in the
AF gene cluster of A. flavus and A. parasiticus and
was cloned using monoclonal antibodies to NAR
[31]. stcV in A. nidulans encodes a similar deduced
product to that of norA; however, the function of
stcV has not been confirmed [22]. The putative ho-

mologue of stcF, avnA (formerly ordl), was initially
identified from the region between ver! and omtA
and associated with an oxidoreductive step in the
AF pathway. Disruption of avnA resulted in a non-
aflatoxigenic averantin-accumulating mutant and
precursor feeding studies with AF intermediates
with this mutant indicated that avnAd, which encodes
a cytochrome P-450 type enzyme, is involved in the
conversion of AVN to AVF [32].

The avfl locus is believed to be involved in the
conversion of AVF to VHA [21]. An AF gene clus-
ter-deleted mutant of A. flavus transformed with a
series of overlapping cosmids containing the AF
cluster accumulated averufanin (AVNN) and AVF
and was relieved by complementation with the avf]
locus. Sequence analysis of the avfl locus revealed
two genes, afiB and afiW, which encode products
with similar amino acid identity to stcB and stcW
respectively in A. nidulans but their functions are as
yet unknown [18].

Conversion of versiconal acetate to versiconal and
subsequently to versicolorin B (VER B) may involve
the putative esterase gene stcl, which has no known
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AF gene homologue, and szcN, a putative oxidore-
ductase [22]. The homologue of szcN, vbs, was cloned
using degenerate primers designed from the amino
acid sequences of peptide fragments of the VBS pro-
tein which catalyses the conversion of versiconal to
VER B [20].

The stcL gene encodes a P-450 monooxygenase
putatively involved in the conversion of VER B to
versicolorin A (VER A) as gene inactivation of stcL
resulted in the accumulation of dihydrosterigmato-
cystin (DHST) [27]. verB, the apparent homologue
of stcL in A. parasiticus and A. flavus, has been
cloned [18]. The conversion of VER A and VER B
to demethylsterigmatocystin (DMST) and dihydro-
demethylsterigmatocystin (DHDMST) involves stcS
and stcU as gene disruption of the two genes resulted
in the accumulation of VER A [33-35]. In addition,
a disrupted double mutant (szcL and stcU) of A.
nidulans accumulated VER B demonstrating the spe-
cific requirement of szcU for the conversion of VER
B to DHDMST [27]. aflS, a gene similar to stcS, has
been located between ver/ A and avnA in the AF gene
cluster [18]. verlA (homologue of stcU), which en-
codes a NADPH-dependent ketoreductase involved
in the conversion of VER A to ST, was isolated by
the complementation of an A. parasiticus mutant
that accumulated VER [36]. The subsequent conver-
sion of DHDMST to DHST and DMST to ST may
involve the methyltransferase stcP, which has no
known AF gene homologue, as disruption of stcP
results in the accumulation of DMST [35].

Homologues of omtA and ordl, genes involved in
the final conversion steps of the AF biosynthetic
pathway, are notably absent in the non-aflatoxigenic
ST-producing A. nidulans. omtA (formerly omtl) was
isolated by antibodies raised against the purified en-
zyme, OMT-A, and subsequently cloned into an E.
coli expression system which overexpressed an OMT-
A-B-galactosidase fusion protein capable of convert-
ing ST to O-methylsterigmatocystin (OMST) [37].
The ordl gene was identified by transforming an A.
flavus AF gene cluster- deleted mutant with a 3.3-kb
genomic fragment and the regulatory gene afiR of
the AF gene cluster which allowed the transformant
to convert OMST to AFB;. Sequence analysis of the
inserted AF fragment revealed ordl which encodes a

cytochrome P-450-type monooxygenase. Transfor-
mation of Saccharomyces cerevisiae with ordl re-
sulted in the ability to convert OMST to AFB,, in-
dicating that the ordl gene product is sufficient to
complete the last step in the AF pathway [21].

There is growing evidence suggesting that gene
expression is involved in the regulation of multiple
parts of the AF/ST biosynthetic pathway. The
observation of co-ordinate transcription of norl,
ver] and omtA suggests that AF genes may be
regulated, at least in part, at the transcriptional level
by a common regulatory factor [37,38]. A. flavus
mutants blocked at afiR (previously afi2) could not
convert various intermediates to AF and comple-
mentation of these mutants with afl2 restored the
expression of several AF pathway enzyme activities,
which is characteristic of a gene encoding a trans-
acting regulatory factor [39]. aflR (previously apa2)
was also isolated from A. parasiticus by complemen-
tation of a non-aflatoxigenic affR mutant [39]. Pre-
liminary studies demonstrated that the transcription
of norl, verl and omtA is activated by the afIR gene
product AFLR [40]. Inactivation of afIR in A. nidu-
lans results in the absence of expression of stcW,
stcV, stcU and stcT transcripts and transformation
of A. nidulans with the aflR homologue from A.
parasiticus regulates ST production, demonstrating
that the AFLR of A. nidulans is a functional homo-
logue of the AFLR of A. parasiticus even though
overall amino acid identity is low [41]. The predicted
amino acid sequence of aflR contains a cysteine-rich
zinc finger DNA-binding domain which is character-
istic of some fungal transcriptional activators. The
expression of affR may be autoregulated as AFLR
has been shown to specifically bind upstream of
the AFLR translation start site [40]. aflJ, which is
located adjacent to afIR, is required for the conver-
sion of AF pathway intermediates to AF as dis-
rupted strains of 4. flavus at the aflJ locus do not
accumulate any AF pathway intermediates and do
not convert NA, ST or OMST to AF. Although
speculative, the deduced amino acid sequence sug-
gests that the aflJ product may be involved in trans-
membrane transport of AF intermediates or the lo-
calisation of AF pathway enzymes to an organelle
[42].
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4. Cloning and molecular characterisation of other
mycotoxin biosynthetic genes

Several genes of the trichothecene biosynthetic
pathway appear to be clustered in F. sporotrichioides
[43]. Analysis of the gene cluster revealed nine genes
within a 25-kb region and the function of eight of
these genes has been assigned [6]. Two of these
genes, Tri 3 and Tri 4, were identified following com-
plementation of UV-induced mutants, blocked in tri-
chothecene T-2 toxin production. 7ri 3 encodes a 15-
O-acetyltransferase, which converts 15-decalonectrin
to calonectrin [43] (Fig. 4). Tri 4 encodes a cyto-
chrome P-450 monooxygenase involved in the first
step in the pathway converting trichodiene to an as
yet unidentified oxygenated product. 7ri 11, a second
cytochrome P-450 monooxygenase, has also been
identified which appears to oxygenate the trichothe-
cene ring at the C-15 position [44]. Two additional
specific acetyltransferases may also be present in the
gene cluster for the hydroxylation at the C-3 and C-4
positions [43]. The other biosynthetic gene, Tri 5,
encodes trichodiene synthase involved in the cyclisa-
tion of farnesyl pyrophosphate to trichodiene (Fig.
4). The biosynthetic pathway appears to be regulated
by the product of the Tri 6 gene, a Cyss, Hiss zinc
finger protein [45]. More recently a Tri 101 gene has
been isolated from F. graminearum, encoding a pro-
tein which catalyses the acetyl CoA-dependent O-
acetylation of the trichothecene ring at the C-3 posi-
tion. This O-acetyl group introduction acts as a re-
sistance mechanism for the type B trichothecene pro-
ducer, F. graminearum [46]. Interestingly, the Tri 101
gene is located between a putative UTP-ammonia
ligase gene and the phosphate permease gene and
mapping analysis with two of the least overlapping
cosmid clones containing 7ri 101 revealed that this
gene is not clustered with Tri 4, Tri 5 and Tri 6 [46].
In addition to the structural genes and transcription
factor, a Tri 12 gene which encodes a putative trans-
port protein has also been identified [6]. The genes of
the biosynthetic pathway of macrocyclic trichothe-
cenes have been investigated in Myrothecium roridum
[4]. Homologues of the non-macrocyclic trichothe-
cenes pathway genes Tri 4, Tri 5 and Tri 6 have
been reported within a 40-kb region of M. roridum.
The deduced amino acid sequences of the products
of MrTri 6 and MrTri 4 are 75% and 63% identical

and similar in molecular mass to the apparent coun-
terpart proteins in F. sporotrichioides. However,
MrTri 6 encodes a protein which is almost twice
the size of the product of Tri 6 and only the C-ter-
minal region containing the Cysy, Hisy zinc finger
motif shows significant homology (65% identity) to
Tri 6 in F. sporotrichioides The putative cytochrome
P-450 monooxygenase product of MrTri 4 appears
to be a functional homologue of Tri 4 as comple-
mentation of a F. sporotrichioides mutant lacking Tri
4 resulted in the accumulation of T-2 toxin, sambu-
cinol, deoxysambucinol and the intermediates, tri-
chothecene and isotrichodiol. Although mapping
data indicate that the macrocyclic genes of M. ror-
idum are clustered, the organisation and orientation
of these genes differ from those of the trichothecene
gene cluster in F. sporotrichioides. In F. sporotri-
chioides the Tri 4, Tri 6 and Tri 5 genes are located
in that order within an 8-kb region whilst their pu-
tative homologues are located within a 40-kb region
in M. roridum. In addition, the relative orientation of
Tri 6 and Tri 4 differs from that of Mr7Tri 6 and
MrTri 4 in M. roridum. While differences in gene
organisation have been observed between the AF
and ST pathways of A. parasiticus and A. nidulans,
the differences in the trichothecene pathways of F.
sporotrichioides and M. roridum are more pro-
nounced [4,10,22,38]. The less conserved gene organ-
isation of the trichothecene pathways, in contrast to
the AF/ST pathways, may be indicative of the pres-
ence of genes required for the production of unique
structural features of the trichothecenes of F. sporo-
trichioides and M. roridum or may reflect the com-
parison of two more distantly related fungal species,
i.e. F. sporotrichioides and M. roridum are taxonomi-
cally more distant than A. parasiticus and A. nidu-
lans. Overall, it is evident that the clustering of genes
for trichothecene biosynthesis is maintained in dis-
tantly related fungi and that the evolution of these
gene clusters can involve substantial genetic rear-
rangements [4].

To date, no fumonisin biosynthetic genes have
been cloned although several genes have been iden-
tified in F. moniliforme by classical genetics. Variants
of Gibberella fujikuroi (F. moniliforme), blocked in
the production of FB; and whose phenotypes segre-
gate as single genetic loci were identified by crossing
with high-producing FB, strains. Four classes of pu-



M.J. Sweeney, A.D.W. Dobson| FEMS Microbiology Letters 175 (1999) 149-163 161

tative fumonisin biosynthetic genes, fum 1, fum 2,
fum 3 and fum 4, were identified by this meiotic
genetic analysis. Fum 1 represents strains that do
not produce FB;, FBy, FB; or FB,, whilst fum 4
represents a single strain that shows reduced fumo-
nisin production and appears to be closely linked to
fum 1. Fum 3 and fum 4 affect the hydroxylation of
FBI1 at C-10 and C-5 respectively and do not affect
the overall level of fumonisin production. Both fum 3
and fum 4 are closely linked to fum 1. Tentative
estimations suggest that fum 4 and fum 2 are situated
250 kb and 360 kb from fum 1; however, gene order
has not been elucidated. Close linkage of the four
genes indicates that the biosynthetic genes are ar-
ranged in a gene cluster on chromosome 1 of G.
fujikuroi. These genetic data are consistent with the
scheme in Fig. 5 where fum 2 may encode a C-10
hydroxylase that converts FB; to FB; and FB; to
FB; while fum 3 may encode a C-5 hydroxylase that
can convert FB; to FBy and FB3 to FB; [16]. How-
ever, the fum loci could alternatively encode regula-
tory genes and not the structural genes of the bio-
synthetic pathway.

5. Conclusions

The cloning and molecular characterisation of my-
cotoxin biosynthetic genes is vital in order to gain a
fuller understanding of the organisation, regulation
and expression of these genes. Firstly this will be
valuable in our overall understanding of the number,
type and order of the enzymatic steps involved in the
various biosynthetic pathways and of the physiolog-
ical factors controlling these processes. Secondly it
will aid in the development of improved molecular-
based detection systems for mycotoxins and myco-
toxigenic fungi in food systems. For example, se-
quence variability in the affR gene generates distinct
DNA fingerprints which allow the non-aflatoxigenic
species of A. sojae and A. oryzae in the Aspergillus
flavi group to be distinguished from the aflatoxigenic
species A. parasiticus and A. flavus [47]. In addition
PCR has been successfully used to detect aflatoxigen-
ic fungi in grains, using primers based on the coding
regions of verl, omtl and afiR [48]. Finally this
knowledge may allow (through the use of techniques
such as gene disruption and AF gene/reporter con-

structs), the development of strategies for the bio-
logical control of mycotoxigenic fungi and the devel-
opment of genetically engineered resistant crop
plants.

The recent field application of atoxigenic strains of
the trichothecene-producing wheat pathogen, Gibber-
ella zeae (Fusarium graminearum), obtained by dis-
ruption of the Tri 5 gene, resulted in disease reduc-
tion and indicates the potential of genetically
engineered atoxigenic fungi for the suppression of
mycotoxigenic fungi in the field [49].
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